Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Sep;116(2):1797–1800. doi: 10.1111/j.1476-5381.1995.tb16665.x

Activation of phospholipase C in SH-SY5Y neuroblastoma cells by potassium-induced calcium entry.

D Smart 1, A Wandless 1, D G Lambert 1
PMCID: PMC1909103  PMID: 8528562

Abstract

1. We used SH-SY5Y human neuroblastoma cells to investigate whether depolarization with high K+ could stimulate inositol (1,4,5)trisphosphate (Ins(1,4,5)P3) formation and, if so, the mechanism involved. 2. Ins(1,4,5)P3 was measured by a specific radioreceptor mass assay, whilst [Ca2+]i was measured fluorimetrically with the Ca2+ indicator dye, Fura-2. 3. Depolarization with K+ caused a time- and dose-dependent increase in [Ca2+]i (peak at 27 s, EC50 of 50.0 +/- 9.0 mM) and Ins(1,4,5)P3 formation (peak at 30 s, EC50 of 47.4 +/- 1.1 mM). 4. Both the K(+)-induced Ins(1,4,5)P3 formation and increase in [Ca2+]i were inhibited dose-dependently by the L-type voltage-sensitive Ca2+ channel closer, (R+)-BayK8644, with IC50 values of 53.4 nM and 87.9 nM respectively. 5. These data show a close temporal and dose-response relationship between Ca2+ entry via L-type voltage-sensitive Ca2+ channels and Ins(1,4,5)P3 formation following depolarization with K+, indicating that Ca2+ influx can activate phospholipase C in SH-SY5Y cells.

Full text

PDF
1797

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atcheson R., Lambert D. G., Hirst R. A., Rowbotham D. J. Studies on the mechanism of [3H]-noradrenaline release from SH-SY5Y cells: the role of Ca2+ and cyclic AMP. Br J Pharmacol. 1994 Mar;111(3):787–792. doi: 10.1111/j.1476-5381.1994.tb14806.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bading H., Ginty D. D., Greenberg M. E. Regulation of gene expression in hippocampal neurons by distinct calcium signaling pathways. Science. 1993 Apr 9;260(5105):181–186. doi: 10.1126/science.8097060. [DOI] [PubMed] [Google Scholar]
  3. Baird J. G., Nahorski S. R. Differences between muscarinic-receptor- and Ca2(+)-induced inositol polyphosphate isomer accumulation in rat cerebral-cortex slices. Biochem J. 1990 May 1;267(3):835–838. doi: 10.1042/bj2670835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baird J. G., Nahorski S. R. Potassium depolarisation markedly enhances muscarinic receptor stimulated inositol tetrakisphosphate accumulation in rat cerebral cortical slices. Biochem Biophys Res Commun. 1986 Dec 30;141(3):1130–1137. doi: 10.1016/s0006-291x(86)80161-9. [DOI] [PubMed] [Google Scholar]
  5. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  6. Biden T. J., Peter-Riesch B., Schlegel W., Wollheim C. B. Ca2+-mediated generation of inositol 1,4,5-triphosphate and inositol 1,3,4,5-tetrakisphosphate in pancreatic islets. Studies with K+, glucose, and carbamylcholine. J Biol Chem. 1987 Mar 15;262(8):3567–3571. [PubMed] [Google Scholar]
  7. Challiss R. A., Batty I. H., Nahorski S. R. Mass measurements of inositol(1,4,5)trisphosphate in rat cerebral cortex slices using a radioreceptor assay: effects of neurotransmitters and depolarization. Biochem Biophys Res Commun. 1988 Dec 15;157(2):684–691. doi: 10.1016/s0006-291x(88)80304-8. [DOI] [PubMed] [Google Scholar]
  8. Challiss R. A., Nahorski S. R. Depolarization and agonist-stimulated changes in inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate mass accumulation in rat cerebral cortex. J Neurochem. 1991 Sep;57(3):1042–1051. doi: 10.1111/j.1471-4159.1991.tb08255.x. [DOI] [PubMed] [Google Scholar]
  9. Chandler L. J., Crews F. T. Calcium- versus G protein-mediated phosphoinositide. Hydrolysis in rat cerebral cortical synaptoneurosomes. J Neurochem. 1990 Sep;55(3):1022–1030. doi: 10.1111/j.1471-4159.1990.tb04592.x. [DOI] [PubMed] [Google Scholar]
  10. Cockcroft S., Thomas G. M. Inositol-lipid-specific phospholipase C isoenzymes and their differential regulation by receptors. Biochem J. 1992 Nov 15;288(Pt 1):1–14. doi: 10.1042/bj2880001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Eberhard D. A., Holz R. W. Calcium promotes the accumulation of polyphosphoinositides in intact and permeabilized bovine adrenal chromaffin cells. Cell Mol Neurobiol. 1991 Jun;11(3):357–370. doi: 10.1007/BF00713279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Eberhard D. A., Holz R. W. Cholinergic stimulation of inositol phosphate formation in bovine adrenal chromaffin cells: distinct nicotinic and muscarinic mechanisms. J Neurochem. 1987 Nov;49(5):1634–1643. doi: 10.1111/j.1471-4159.1987.tb01037.x. [DOI] [PubMed] [Google Scholar]
  13. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  14. Hajnóczky G., Várnai P., Buday L., Faragó A., Spät A. The role of protein kinase-C in control of aldosterone production by rat adrenal glomerulosa cells: activation of protein kinase-C by stimulation with potassium. Endocrinology. 1992 Apr;130(4):2230–2236. doi: 10.1210/endo.130.4.1547736. [DOI] [PubMed] [Google Scholar]
  15. Kelley G. G., Zawalich K. C., Zawalich W. S. Calcium and a mitochondrial signal interact to stimulate phosphoinositide hydrolysis and insulin secretion in rat islets. Endocrinology. 1994 Apr;134(4):1648–1654. doi: 10.1210/endo.134.4.8137727. [DOI] [PubMed] [Google Scholar]
  16. Kendall D. A., Nahorski S. R. Depolarisation-evoked release of acetylcholine can mediate phosphoinositide hydrolysis in slices of rat cerebral cortex. Neuropharmacology. 1987 Jun;26(6):513–519. doi: 10.1016/0028-3908(87)90142-0. [DOI] [PubMed] [Google Scholar]
  17. Kendall D. A., Nahorski S. R. Dihydropyridine calcium channel activators and antagonists influence depolarization-evoked inositol phospholipid hydrolysis in brain. Eur J Pharmacol. 1985 Sep 10;115(1):31–36. doi: 10.1016/0014-2999(85)90580-1. [DOI] [PubMed] [Google Scholar]
  18. Kendall D. A., Nahorski S. R. Inositol phospholipid hydrolysis in rat cerebral cortical slices: II. Calcium requirement. J Neurochem. 1984 May;42(5):1388–1394. doi: 10.1111/j.1471-4159.1984.tb02799.x. [DOI] [PubMed] [Google Scholar]
  19. Lambert D. G., Challiss R. A., Nahorski S. R. Accumulation and metabolism of Ins(1,4,5)P3 and Ins(1,3,4,5)P4 in muscarinic-receptor-stimulated SH-SY5Y neuroblastoma cells. Biochem J. 1991 Feb 1;273(Pt 3):791–794. doi: 10.1042/bj2730791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lambert D. G., Nahorski S. R. Muscarinic-receptor-mediated changes in intracellular Ca2+ and inositol 1,4,5-trisphosphate mass in a human neuroblastoma cell line, SH-SY5Y. Biochem J. 1990 Jan 15;265(2):555–562. doi: 10.1042/bj2650555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lambert D. G., Whitham E. M., Baird J. G., Nahorski S. R. Different mechanisms of Ca2+ entry induced by depolarization and muscarinic receptor stimulation in SH-SY5Y human neuroblastoma cells. Brain Res Mol Brain Res. 1990 Aug;8(3):263–266. doi: 10.1016/0169-328x(90)90026-a. [DOI] [PubMed] [Google Scholar]
  22. Lambert D. G., Wojcikiewicz R. J., Nahorski S. R. Generation and metabolism of Ins(1,4,5)P3 in SH-SY5Y human neuroblastoma cells: the regulatory role of Ca2+. Biochem Soc Trans. 1991 Nov;19(4):424S–424S. doi: 10.1042/bst019424s. [DOI] [PubMed] [Google Scholar]
  23. Morton A. J., Hammond C., Mason W. T., Henderson G. Characterisation of the L- and N-type calcium channels in differentiated SH-SY5Y neuroblastoma cells: calcium imaging and single channel recording. Brain Res Mol Brain Res. 1992 Mar;13(1-2):53–61. doi: 10.1016/0169-328x(92)90044-c. [DOI] [PubMed] [Google Scholar]
  24. Reeve H. L., Vaughan P. F., Peers C. Calcium channel currents in undifferentiated human neuroblastoma (SH-SY5Y) cells: actions and possible interactions of dihydropyridines and omega-conotoxin. Eur J Neurosci. 1994 Jun 1;6(6):943–952. doi: 10.1111/j.1460-9568.1994.tb00588.x. [DOI] [PubMed] [Google Scholar]
  25. Shears S. B. Metabolism of the inositol phosphates produced upon receptor activation. Biochem J. 1989 Jun 1;260(2):313–324. doi: 10.1042/bj2600313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Smart D., Smith G., Lambert D. G. Halothane and isoflurane enhance basal and carbachol-stimulated inositol(1,4,5)triphosphate formation in SH-SY5Y human neuroblastoma cells. Biochem Pharmacol. 1994 Mar 15;47(6):939–945. doi: 10.1016/0006-2952(94)90403-0. [DOI] [PubMed] [Google Scholar]
  27. Smart D., Smith G., Lambert D. G. Mu-opioids activate phospholipase C in SH-SY5Y human neuroblastoma cells via calcium-channel opening. Biochem J. 1995 Jan 15;305(Pt 2):577–581. doi: 10.1042/bj3050577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Smart D., Smith G., Lambert D. G. mu-Opioid receptor stimulation of inositol (1,4,5)trisphosphate formation via a pertussis toxin-sensitive G protein. J Neurochem. 1994 Mar;62(3):1009–1014. doi: 10.1046/j.1471-4159.1994.62031009.x. [DOI] [PubMed] [Google Scholar]
  29. Spedding M., Paoletti R. Classification of calcium channels and the sites of action of drugs modifying channel function. Pharmacol Rev. 1992 Sep;44(3):363–376. [PubMed] [Google Scholar]
  30. Toselli M., Masetto S., Rossi P., Taglietti V. Characterization of a Voltage-dependent Calcium Current in the Human Neuroblastoma Cell Line SH-SY5Y During Differentiation. Eur J Neurosci. 1991 Jun;3(6):514–522. doi: 10.1111/j.1460-9568.1991.tb00838.x. [DOI] [PubMed] [Google Scholar]
  31. Zhang G. H., Melvin J. E. Membrane potential regulates Ca2+ uptake and inositol phosphate generation in rat sublingual mucous acini. Cell Calcium. 1993 Jul;14(7):551–562. doi: 10.1016/0143-4160(93)90076-i. [DOI] [PubMed] [Google Scholar]
  32. van Amsterdam F. T., Punt N. C., Haas M., van Amsterdam-Magnoni M. S., Zaagsma J. Stereoisomers of BAY K 8644 show opposite activities in the normal and ischaemic rat heart. A comparison with nifedipine. Naunyn Schmiedebergs Arch Pharmacol. 1989 Jun;339(6):647–652. doi: 10.1007/BF00168657. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES