Abstract
1. We used SH-SY5Y human neuroblastoma cells to investigate whether depolarization with high K+ could stimulate inositol (1,4,5)trisphosphate (Ins(1,4,5)P3) formation and, if so, the mechanism involved. 2. Ins(1,4,5)P3 was measured by a specific radioreceptor mass assay, whilst [Ca2+]i was measured fluorimetrically with the Ca2+ indicator dye, Fura-2. 3. Depolarization with K+ caused a time- and dose-dependent increase in [Ca2+]i (peak at 27 s, EC50 of 50.0 +/- 9.0 mM) and Ins(1,4,5)P3 formation (peak at 30 s, EC50 of 47.4 +/- 1.1 mM). 4. Both the K(+)-induced Ins(1,4,5)P3 formation and increase in [Ca2+]i were inhibited dose-dependently by the L-type voltage-sensitive Ca2+ channel closer, (R+)-BayK8644, with IC50 values of 53.4 nM and 87.9 nM respectively. 5. These data show a close temporal and dose-response relationship between Ca2+ entry via L-type voltage-sensitive Ca2+ channels and Ins(1,4,5)P3 formation following depolarization with K+, indicating that Ca2+ influx can activate phospholipase C in SH-SY5Y cells.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Atcheson R., Lambert D. G., Hirst R. A., Rowbotham D. J. Studies on the mechanism of [3H]-noradrenaline release from SH-SY5Y cells: the role of Ca2+ and cyclic AMP. Br J Pharmacol. 1994 Mar;111(3):787–792. doi: 10.1111/j.1476-5381.1994.tb14806.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bading H., Ginty D. D., Greenberg M. E. Regulation of gene expression in hippocampal neurons by distinct calcium signaling pathways. Science. 1993 Apr 9;260(5105):181–186. doi: 10.1126/science.8097060. [DOI] [PubMed] [Google Scholar]
- Baird J. G., Nahorski S. R. Differences between muscarinic-receptor- and Ca2(+)-induced inositol polyphosphate isomer accumulation in rat cerebral-cortex slices. Biochem J. 1990 May 1;267(3):835–838. doi: 10.1042/bj2670835. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baird J. G., Nahorski S. R. Potassium depolarisation markedly enhances muscarinic receptor stimulated inositol tetrakisphosphate accumulation in rat cerebral cortical slices. Biochem Biophys Res Commun. 1986 Dec 30;141(3):1130–1137. doi: 10.1016/s0006-291x(86)80161-9. [DOI] [PubMed] [Google Scholar]
- Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
- Biden T. J., Peter-Riesch B., Schlegel W., Wollheim C. B. Ca2+-mediated generation of inositol 1,4,5-triphosphate and inositol 1,3,4,5-tetrakisphosphate in pancreatic islets. Studies with K+, glucose, and carbamylcholine. J Biol Chem. 1987 Mar 15;262(8):3567–3571. [PubMed] [Google Scholar]
- Challiss R. A., Batty I. H., Nahorski S. R. Mass measurements of inositol(1,4,5)trisphosphate in rat cerebral cortex slices using a radioreceptor assay: effects of neurotransmitters and depolarization. Biochem Biophys Res Commun. 1988 Dec 15;157(2):684–691. doi: 10.1016/s0006-291x(88)80304-8. [DOI] [PubMed] [Google Scholar]
- Challiss R. A., Nahorski S. R. Depolarization and agonist-stimulated changes in inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate mass accumulation in rat cerebral cortex. J Neurochem. 1991 Sep;57(3):1042–1051. doi: 10.1111/j.1471-4159.1991.tb08255.x. [DOI] [PubMed] [Google Scholar]
- Chandler L. J., Crews F. T. Calcium- versus G protein-mediated phosphoinositide. Hydrolysis in rat cerebral cortical synaptoneurosomes. J Neurochem. 1990 Sep;55(3):1022–1030. doi: 10.1111/j.1471-4159.1990.tb04592.x. [DOI] [PubMed] [Google Scholar]
- Cockcroft S., Thomas G. M. Inositol-lipid-specific phospholipase C isoenzymes and their differential regulation by receptors. Biochem J. 1992 Nov 15;288(Pt 1):1–14. doi: 10.1042/bj2880001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eberhard D. A., Holz R. W. Calcium promotes the accumulation of polyphosphoinositides in intact and permeabilized bovine adrenal chromaffin cells. Cell Mol Neurobiol. 1991 Jun;11(3):357–370. doi: 10.1007/BF00713279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eberhard D. A., Holz R. W. Cholinergic stimulation of inositol phosphate formation in bovine adrenal chromaffin cells: distinct nicotinic and muscarinic mechanisms. J Neurochem. 1987 Nov;49(5):1634–1643. doi: 10.1111/j.1471-4159.1987.tb01037.x. [DOI] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Hajnóczky G., Várnai P., Buday L., Faragó A., Spät A. The role of protein kinase-C in control of aldosterone production by rat adrenal glomerulosa cells: activation of protein kinase-C by stimulation with potassium. Endocrinology. 1992 Apr;130(4):2230–2236. doi: 10.1210/endo.130.4.1547736. [DOI] [PubMed] [Google Scholar]
- Kelley G. G., Zawalich K. C., Zawalich W. S. Calcium and a mitochondrial signal interact to stimulate phosphoinositide hydrolysis and insulin secretion in rat islets. Endocrinology. 1994 Apr;134(4):1648–1654. doi: 10.1210/endo.134.4.8137727. [DOI] [PubMed] [Google Scholar]
- Kendall D. A., Nahorski S. R. Depolarisation-evoked release of acetylcholine can mediate phosphoinositide hydrolysis in slices of rat cerebral cortex. Neuropharmacology. 1987 Jun;26(6):513–519. doi: 10.1016/0028-3908(87)90142-0. [DOI] [PubMed] [Google Scholar]
- Kendall D. A., Nahorski S. R. Dihydropyridine calcium channel activators and antagonists influence depolarization-evoked inositol phospholipid hydrolysis in brain. Eur J Pharmacol. 1985 Sep 10;115(1):31–36. doi: 10.1016/0014-2999(85)90580-1. [DOI] [PubMed] [Google Scholar]
- Kendall D. A., Nahorski S. R. Inositol phospholipid hydrolysis in rat cerebral cortical slices: II. Calcium requirement. J Neurochem. 1984 May;42(5):1388–1394. doi: 10.1111/j.1471-4159.1984.tb02799.x. [DOI] [PubMed] [Google Scholar]
- Lambert D. G., Challiss R. A., Nahorski S. R. Accumulation and metabolism of Ins(1,4,5)P3 and Ins(1,3,4,5)P4 in muscarinic-receptor-stimulated SH-SY5Y neuroblastoma cells. Biochem J. 1991 Feb 1;273(Pt 3):791–794. doi: 10.1042/bj2730791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lambert D. G., Nahorski S. R. Muscarinic-receptor-mediated changes in intracellular Ca2+ and inositol 1,4,5-trisphosphate mass in a human neuroblastoma cell line, SH-SY5Y. Biochem J. 1990 Jan 15;265(2):555–562. doi: 10.1042/bj2650555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lambert D. G., Whitham E. M., Baird J. G., Nahorski S. R. Different mechanisms of Ca2+ entry induced by depolarization and muscarinic receptor stimulation in SH-SY5Y human neuroblastoma cells. Brain Res Mol Brain Res. 1990 Aug;8(3):263–266. doi: 10.1016/0169-328x(90)90026-a. [DOI] [PubMed] [Google Scholar]
- Lambert D. G., Wojcikiewicz R. J., Nahorski S. R. Generation and metabolism of Ins(1,4,5)P3 in SH-SY5Y human neuroblastoma cells: the regulatory role of Ca2+. Biochem Soc Trans. 1991 Nov;19(4):424S–424S. doi: 10.1042/bst019424s. [DOI] [PubMed] [Google Scholar]
- Morton A. J., Hammond C., Mason W. T., Henderson G. Characterisation of the L- and N-type calcium channels in differentiated SH-SY5Y neuroblastoma cells: calcium imaging and single channel recording. Brain Res Mol Brain Res. 1992 Mar;13(1-2):53–61. doi: 10.1016/0169-328x(92)90044-c. [DOI] [PubMed] [Google Scholar]
- Reeve H. L., Vaughan P. F., Peers C. Calcium channel currents in undifferentiated human neuroblastoma (SH-SY5Y) cells: actions and possible interactions of dihydropyridines and omega-conotoxin. Eur J Neurosci. 1994 Jun 1;6(6):943–952. doi: 10.1111/j.1460-9568.1994.tb00588.x. [DOI] [PubMed] [Google Scholar]
- Shears S. B. Metabolism of the inositol phosphates produced upon receptor activation. Biochem J. 1989 Jun 1;260(2):313–324. doi: 10.1042/bj2600313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smart D., Smith G., Lambert D. G. Halothane and isoflurane enhance basal and carbachol-stimulated inositol(1,4,5)triphosphate formation in SH-SY5Y human neuroblastoma cells. Biochem Pharmacol. 1994 Mar 15;47(6):939–945. doi: 10.1016/0006-2952(94)90403-0. [DOI] [PubMed] [Google Scholar]
- Smart D., Smith G., Lambert D. G. Mu-opioids activate phospholipase C in SH-SY5Y human neuroblastoma cells via calcium-channel opening. Biochem J. 1995 Jan 15;305(Pt 2):577–581. doi: 10.1042/bj3050577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smart D., Smith G., Lambert D. G. mu-Opioid receptor stimulation of inositol (1,4,5)trisphosphate formation via a pertussis toxin-sensitive G protein. J Neurochem. 1994 Mar;62(3):1009–1014. doi: 10.1046/j.1471-4159.1994.62031009.x. [DOI] [PubMed] [Google Scholar]
- Spedding M., Paoletti R. Classification of calcium channels and the sites of action of drugs modifying channel function. Pharmacol Rev. 1992 Sep;44(3):363–376. [PubMed] [Google Scholar]
- Toselli M., Masetto S., Rossi P., Taglietti V. Characterization of a Voltage-dependent Calcium Current in the Human Neuroblastoma Cell Line SH-SY5Y During Differentiation. Eur J Neurosci. 1991 Jun;3(6):514–522. doi: 10.1111/j.1460-9568.1991.tb00838.x. [DOI] [PubMed] [Google Scholar]
- Zhang G. H., Melvin J. E. Membrane potential regulates Ca2+ uptake and inositol phosphate generation in rat sublingual mucous acini. Cell Calcium. 1993 Jul;14(7):551–562. doi: 10.1016/0143-4160(93)90076-i. [DOI] [PubMed] [Google Scholar]
- van Amsterdam F. T., Punt N. C., Haas M., van Amsterdam-Magnoni M. S., Zaagsma J. Stereoisomers of BAY K 8644 show opposite activities in the normal and ischaemic rat heart. A comparison with nifedipine. Naunyn Schmiedebergs Arch Pharmacol. 1989 Jun;339(6):647–652. doi: 10.1007/BF00168657. [DOI] [PubMed] [Google Scholar]
