Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Nov;116(6):2582–2590. doi: 10.1111/j.1476-5381.1995.tb17211.x

Involvement of nitric oxide in the non-adrenergic non-cholinergic neurotransmission of horse deep penile arteries: role of charybdotoxin-sensitive K(+)-channels.

U Simonsen 1, D Prieto 1, I Sánez de Tejada 1, A García-Sacristán 1
PMCID: PMC1909130  PMID: 8590974

Abstract

1. The involvement of nitric oxide (NO) and the signal transduction mechanisms mediating neurogenic relaxations were investigated in deep intracavernous penile arteries with an internal lumen diameter of 600-900 microns, isolated from the corpus cavernosum of young horses. 2. The presence of nitric oxide synthase (NOS)-positive nerves was examined in cross and longitudinal sections of isolated penile arteries processed for NADPH-diaphorase (NADPH-d) histochemistry. NADPH-d-positive nerve fibres were observed in the adventitia-media junction of deep penile arteries and in relation to the trabecular smooth muscle. 3. Electrical field stimulation (EFS) evoked frequency-dependent relaxations of both endothelium-intact and denuded arterial preparations treated with guanethidine (10(-5) M) and atropine (10(-7) M), and contracted with 10(-6) M phenylephrine. These EFS-induced relaxations were tetrodotoxin-sensitive indicating their non-adrenergic non-cholinergic (NANC) neurogenic origin. 4. EFS-evoked relaxations were abolished at the lowest frequency (0.5-2 Hz) and attenuated at higher frequencies (4-32 Hz) by the NOS inhibitor, NG-nitro-L-arginine (L-NOARG, 3 x 10(-3) M). This inhibitory effect was antagonized by the NO precursor, L-arginine (3 x 10(-3) M). NG-nitro-D-arginine (10(-4) M) did not affect the relaxations to EFS. 5. Incubation with either the NO scavenger, oxyhaemoglobin (10(-5) M), or methylene blue (10(-5) M), an inhibitor of guanylate cyclase activation by NO, caused significant inhibitions of the EFS-evoked relaxations, and while oxyhaemoglobin abolished the relaxations to exogenously added NO (acidified sodium nitrite, 10(-6) - 10(-3) M), there still persisted a relaxation to NO of 24.4 +/- 5.1% (n = 6) in the presence of methylene blue. 6. Glibenclamide (3 x 10(-6) M), an inhibitor of ATP-activated K(+)-channels, did not alter the relaxations to either EFS-stimulation or NO, while the blocker of Ca(2+)-activated K(+)-channels, charybdotoxin (3 x 10(-8) M), caused a significant inhibition of both the electrically-induced relaxations and the relaxations to exogenously added NO. Furthermore, charybdotoxin blocked relaxations induced by the cell permeable analogue of cyclic GMP, 8-bromo cyclic GMP (8 Br-cyclic GMP). 7. These results suggest that relaxations of horse deep penile arteries induced by NANC nerve stimulation involve mainly NO or a NO-like substance from nitrergic nerves. NO would stimulate the accumulation of cyclic GMP followed by increases in the open probability of Ca(2+)-activated K(+)-channels and hyperpolarization leading to relaxation of horse penile arteries.

Full text

PDF
2582

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson P. O., Bloom S. R., Mellander S. Haemodynamics of pelvic nerve induced penile erection in the dog: possible mediation by vasoactive intestinal polypeptide. J Physiol. 1984 May;350:209–224. doi: 10.1113/jphysiol.1984.sp015197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ayajiki K., Okamura T., Toda N. Nitric oxide mediates, and acetylcholine modulates, neurally induced relaxation of bovine cerebral arteries. Neuroscience. 1993 Jun;54(3):819–825. doi: 10.1016/0306-4522(93)90251-a. [DOI] [PubMed] [Google Scholar]
  3. Bolotina V. M., Najibi S., Palacino J. J., Pagano P. J., Cohen R. A. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature. 1994 Apr 28;368(6474):850–853. doi: 10.1038/368850a0. [DOI] [PubMed] [Google Scholar]
  4. Bowman A., Gillespie J. S. Neurogenic vasodilatation in isolated bovine and canine penile arteries. J Physiol. 1983 Aug;341:603–616. doi: 10.1113/jphysiol.1983.sp014827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brindley G. S. Pilot experiments on the actions of drugs injected into the human corpus cavernosum penis. Br J Pharmacol. 1986 Mar;87(3):495–500. doi: 10.1111/j.1476-5381.1986.tb10191.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burnett A. L., Lowenstein C. J., Bredt D. S., Chang T. S., Snyder S. H. Nitric oxide: a physiologic mediator of penile erection. Science. 1992 Jul 17;257(5068):401–403. doi: 10.1126/science.1378650. [DOI] [PubMed] [Google Scholar]
  7. Burnett A. L., Tillman S. L., Chang T. S., Epstein J. I., Lowenstein C. J., Bredt D. S., Snyder S. H., Walsh P. C. Immunohistochemical localization of nitric oxide synthase in the autonomic innervation of the human penis. J Urol. 1993 Jul;150(1):73–76. doi: 10.1016/s0022-5347(17)35401-0. [DOI] [PubMed] [Google Scholar]
  8. Cocks T. M., Angus J. A. Comparison of relaxation responses of vascular and non-vascular smooth muscle to endothelium-derived relaxing factor (EDRF), acidified sodium nitrite (NO) and sodium nitroprusside. Naunyn Schmiedebergs Arch Pharmacol. 1990 Apr;341(4):364–372. doi: 10.1007/BF00180663. [DOI] [PubMed] [Google Scholar]
  9. Cowan C. L., Palacino J. J., Najibi S., Cohen R. A. Potassium channel-mediated relaxation to acetylcholine in rabbit arteries. J Pharmacol Exp Ther. 1993 Sep;266(3):1482–1489. [PubMed] [Google Scholar]
  10. Craven P. A., DeRubertis F. R. Restoration of the responsiveness of purified guanylate cyclase to nitrosoguanidine, nitric oxide, and related activators by heme and hemeproteins. Evidence for involvement of the paramagnetic nitrosyl-heme complex in enzyme activation. J Biol Chem. 1978 Dec 10;253(23):8433–8443. [PubMed] [Google Scholar]
  11. De Man J. G., Boeckxstaens G. E., Pelckmans P. P., De Winter B. Y., Herman A. G., Van Maercke Y. M. Prejunctional modulation of the nitrergic innervation of the canine ileocolonic junction via potassium channels. Br J Pharmacol. 1993 Oct;110(2):559–564. doi: 10.1111/j.1476-5381.1993.tb13847.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Finberg J. P., Levy S., Vardi Y. Inhibition of nerve stimulation-induced vasodilatation in corpora cavernosa of the pithed rat by blockade of nitric oxide synthase. Br J Pharmacol. 1993 Apr;108(4):1038–1042. doi: 10.1111/j.1476-5381.1993.tb13502.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Goulding E. H., Tibbs G. R., Siegelbaum S. A. Molecular mechanism of cyclic-nucleotide-gated channel activation. Nature. 1994 Nov 24;372(6504):369–374. doi: 10.1038/372369a0. [DOI] [PubMed] [Google Scholar]
  14. Gruetter C. A., Kadowitz P. J., Ignarro L. J. Methylene blue inhibits coronary arterial relaxation and guanylate cyclase activation by nitroglycerin, sodium nitrite, and amyl nitrite. Can J Physiol Pharmacol. 1981 Feb;59(2):150–156. doi: 10.1139/y81-025. [DOI] [PubMed] [Google Scholar]
  15. Gustafsson L. E., Persson M. G., Wei S. Z., Wiklund N. P., Elias Y. Neurogenic vasodilation in rabbit hindlimb mediated by tachykinins and nitric oxide. J Cardiovasc Pharmacol. 1994 Apr;23(4):612–617. doi: 10.1097/00005344-199404000-00013. [DOI] [PubMed] [Google Scholar]
  16. Hedlund P., Holmquist F., Hedlund H., Andersson K. E. Effects of nicorandil on human isolated corpus cavernosum and cavernous artery. J Urol. 1994 Apr;151(4):1107–1113. doi: 10.1016/s0022-5347(17)35193-5. [DOI] [PubMed] [Google Scholar]
  17. Holmquist F., Hedlund H., Andersson K. E. Characterization of inhibitory neurotransmission in the isolated corpus cavernosum from rabbit and man. J Physiol. 1992 Apr;449:295–311. doi: 10.1113/jphysiol.1992.sp019087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Holmquist F., Stief C. G., Jonas U., Andersson K. E. Effects of the nitric oxide synthase inhibitor NG-nitro-L-arginine on the erectile response to cavernous nerve stimulation in the rabbit. Acta Physiol Scand. 1991 Nov;143(3):299–304. doi: 10.1111/j.1748-1716.1991.tb09236.x. [DOI] [PubMed] [Google Scholar]
  19. Hope B. T., Vincent S. R. Histochemical characterization of neuronal NADPH-diaphorase. J Histochem Cytochem. 1989 May;37(5):653–661. doi: 10.1177/37.5.2703701. [DOI] [PubMed] [Google Scholar]
  20. Ignarro L. J., Bush P. A., Buga G. M., Wood K. S., Fukuto J. M., Rajfer J. Nitric oxide and cyclic GMP formation upon electrical field stimulation cause relaxation of corpus cavernosum smooth muscle. Biochem Biophys Res Commun. 1990 Jul 31;170(2):843–850. doi: 10.1016/0006-291x(90)92168-y. [DOI] [PubMed] [Google Scholar]
  21. Juenemann K. P., Lue T. F., Luo J. A., Jadallah S. A., Nunes L. L., Tanagho E. A. The role of vasoactive intestinal polypeptide as a neurotransmitter in canine penile erection: a combined in vivo and immunohistochemical study. J Urol. 1987 Oct;138(4):871–877. doi: 10.1016/s0022-5347(17)43406-9. [DOI] [PubMed] [Google Scholar]
  22. Khan S. A., Mathews W. R., Meisheri K. D. Role of calcium-activated K+ channels in vasodilation induced by nitroglycerine, acetylcholine and nitric oxide. J Pharmacol Exp Ther. 1993 Dec;267(3):1327–1335. [PubMed] [Google Scholar]
  23. Kim N., Azadzoi K. M., Goldstein I., Saenz de Tejada I. A nitric oxide-like factor mediates nonadrenergic-noncholinergic neurogenic relaxation of penile corpus cavernosum smooth muscle. J Clin Invest. 1991 Jul;88(1):112–118. doi: 10.1172/JCI115266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Klinge E., Sjöstrand N. O. Contraction and relaxation of the retractor penis muscle and the penile artery of the bull. Acta Physiol Scand Suppl. 1974;420:1–88. [PubMed] [Google Scholar]
  25. Larsson L. I. Occurrence of nerves containing vasoactive intestinal polypeptide immunoreactivity in the male genital tract. Life Sci. 1977 Aug 15;21(4):503–508. doi: 10.1016/0024-3205(77)90088-1. [DOI] [PubMed] [Google Scholar]
  26. Liu X. R., Gillespie J. S., Gibson I. F., Martin W. Effects of NG-substituted analogues of L-arginine on NANC relaxation of the rat anococcygeus and bovine retractor penis muscles and the bovine penile artery. Br J Pharmacol. 1991 Sep;104(1):53–58. doi: 10.1111/j.1476-5381.1991.tb12384.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lue T. F., Tanagho E. A. Physiology of erection and pharmacological management of impotence. J Urol. 1987 May;137(5):829–836. doi: 10.1016/s0022-5347(17)44267-4. [DOI] [PubMed] [Google Scholar]
  28. Martin W., Villani G. M., Jothianandan D., Furchgott R. F. Selective blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation by hemoglobin and by methylene blue in the rabbit aorta. J Pharmacol Exp Ther. 1985 Mar;232(3):708–716. [PubMed] [Google Scholar]
  29. Matsumoto T., Nakane M., Pollock J. S., Kuk J. E., Förstermann U. A correlation between soluble brain nitric oxide synthase and NADPH-diaphorase activity is only seen after exposure of the tissue to fixative. Neurosci Lett. 1993 May 28;155(1):61–64. doi: 10.1016/0304-3940(93)90673-9. [DOI] [PubMed] [Google Scholar]
  30. Mayer B., Brunner F., Schmidt K. Inhibition of nitric oxide synthesis by methylene blue. Biochem Pharmacol. 1993 Jan 26;45(2):367–374. doi: 10.1016/0006-2952(93)90072-5. [DOI] [PubMed] [Google Scholar]
  31. McConnell J., Benson G. S., Wood J. Autonomic innervation of the mammalian penis: a histochemical and physiological study. J Neural Transm. 1979;45(3):227–238. doi: 10.1007/BF01244411. [DOI] [PubMed] [Google Scholar]
  32. Persico P., Calignano A., Mancuso F., Sorrentino L. Involvement of NK receptors and beta-adrenoceptors in nitric oxide-dependent relaxation of rabbit aorta rings following electrical-field stimulation. Eur J Pharmacol. 1993 Jul 6;238(1):105–109. doi: 10.1016/0014-2999(93)90512-g. [DOI] [PubMed] [Google Scholar]
  33. Pickard R. S., Powell P. H., Zar M. A. The effect of inhibitors of nitric oxide biosynthesis and cyclic GMP formation on nerve-evoked relaxation of human cavernosal smooth muscle. Br J Pharmacol. 1991 Nov;104(3):755–759. doi: 10.1111/j.1476-5381.1991.tb12500.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Polak J. M., Gu J., Mina S., Bloom S. R. Vipergic nerves in the penis. Lancet. 1981 Aug 1;2(8240):217–219. doi: 10.1016/s0140-6736(81)90471-2. [DOI] [PubMed] [Google Scholar]
  35. Robertson B. E., Schubert R., Hescheler J., Nelson M. T. cGMP-dependent protein kinase activates Ca-activated K channels in cerebral artery smooth muscle cells. Am J Physiol. 1993 Jul;265(1 Pt 1):C299–C303. doi: 10.1152/ajpcell.1993.265.1.C299. [DOI] [PubMed] [Google Scholar]
  36. Roy J. B., Petrone R. L., Said S. I. A clinical trial of intracavernous vasoactive intestinal peptide to induce penile erection. J Urol. 1990 Feb;143(2):302–304. doi: 10.1016/s0022-5347(17)39939-1. [DOI] [PubMed] [Google Scholar]
  37. Saenz de Tejada I., Blanco R., Goldstein I., Azadzoi K., de las Morenas A., Krane R. J., Cohen R. A. Cholinergic neurotransmission in human corpus cavernosum. I. Responses of isolated tissue. Am J Physiol. 1988 Mar;254(3 Pt 2):H459–H467. doi: 10.1152/ajpheart.1988.254.3.H459. [DOI] [PubMed] [Google Scholar]
  38. Schmidt H. H. NO., CO and .OH. Endogenous soluble guanylyl cyclase-activating factors. FEBS Lett. 1992 Jul 27;307(1):102–107. doi: 10.1016/0014-5793(92)80910-9. [DOI] [PubMed] [Google Scholar]
  39. Stief C. G., Wetterauer U., Schaebsdau F. H., Jonas U. Calcitonin-gene-related peptide: a possible role in human penile erection and its therapeutic application in impotent patients. J Urol. 1991 Oct;146(4):1010–1014. doi: 10.1016/s0022-5347(17)37989-2. [DOI] [PubMed] [Google Scholar]
  40. Stief C., Benard F., Bosch R., Aboseif S., Nunes L., Lue T. F., Tanagho E. A. Acetylcholine as a possible neurotransmitter in penile erection. J Urol. 1989 Jun;141(6):1444–1448. doi: 10.1016/s0022-5347(17)41342-5. [DOI] [PubMed] [Google Scholar]
  41. Tare M., Parkington H. C., Coleman H. A., Neild T. O., Dusting G. J. Hyperpolarization and relaxation of arterial smooth muscle caused by nitric oxide derived from the endothelium. Nature. 1990 Jul 5;346(6279):69–71. doi: 10.1038/346069a0. [DOI] [PubMed] [Google Scholar]
  42. Trigo-Rocha F., Aronson W. J., Hohenfellner M., Ignarro L. J., Rajfer J., Lue T. F. Nitric oxide and cGMP: mediators of pelvic nerve-stimulated erection in dogs. Am J Physiol. 1993 Feb;264(2 Pt 2):H419–H422. doi: 10.1152/ajpheart.1993.264.2.H419. [DOI] [PubMed] [Google Scholar]
  43. Vanheel B., Van de Voorde J., Leusen I. Contribution of nitric oxide to the endothelium-dependent hyperpolarization in rat aorta. J Physiol. 1994 Mar 1;475(2):277–284. doi: 10.1113/jphysiol.1994.sp020068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Vizzard M. A., Erdman S. L., Förstermann U., de Groat W. C. Differential distribution of nitric oxide synthase in neural pathways to the urogenital organs (urethra, penis, urinary bladder) of the rat. Brain Res. 1994 May 23;646(2):279–291. doi: 10.1016/0006-8993(94)90090-6. [DOI] [PubMed] [Google Scholar]
  45. Wallenstein S., Zucker C. L., Fleiss J. L. Some statistical methods useful in circulation research. Circ Res. 1980 Jul;47(1):1–9. doi: 10.1161/01.res.47.1.1. [DOI] [PubMed] [Google Scholar]
  46. Willis E., Ottesen B., Wagner G., Sundler F., Fahrenkrug J. Vasoactive intestinal polypeptide (VIP) as a possible neurotransmitter involved in penile erection. Acta Physiol Scand. 1981 Dec;113(4):545–547. doi: 10.1111/j.1748-1716.1981.tb06936.x. [DOI] [PubMed] [Google Scholar]
  47. Wolin M. S., Cherry P. D., Rodenburg J. M., Messina E. J., Kaley G. Methylene blue inhibits vasodilation of skeletal muscle arterioles to acetylcholine and nitric oxide via the extracellular generation of superoxide anion. J Pharmacol Exp Ther. 1990 Sep;254(3):872–876. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES