Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Dec;116(8):3110–3116. doi: 10.1111/j.1476-5381.1995.tb15112.x

Inhibition of cyclic GMP-dependent protein kinase-mediated effects by (Rp)-8-bromo-PET-cyclic GMPS.

E Butt 1, D Pöhler 1, H G Genieser 1, J P Huggins 1, B Bucher 1
PMCID: PMC1909162  PMID: 8719784

Abstract

1. The modulation of the guanosine 3':5'-cyclic monophosphate (cyclic GMP)- and adenosine 3':5'-cyclic monophosphate (cyclic AMP)-dependent protein kinase activities by the diastereomers of 8-bromo-beta phenyl-1, N2-ethenoguanosine 3':5'-cyclic monophosphorothioate, ((Rp)- and (Sp)-8-bromo-PET-cyclic GMPS) was investigated by use of purified protein kinases. In addition, the effects of (Rp)-8-bromo-PET-cyclic GMPS on protein phosphorylation in intact human platelets and on [3H]-noradrenaline release and neurogenic vasoconstriction in electrical field stimulated rat tail arteries were also studied. 2. Kinetic analysis with purified cyclic GMP-dependent protein kinase (PKG) type I alpha and I beta, which are expressed in the rat tail artery, revealed that (Rp)-8-bromo-PET-cyclic GMPS is a competitive inhibitor with an apparent Ki of 0.03 microM. The activation of purified cyclic AMP-dependent protein kinase (PKA) type II was antagonized with an apparent Ki of 10 microM. 3. In human platelets, (Rp)-8-bromo-PET-cyclic GMPS (0.1 mM) antagonized the activation of the PKG by the selective activator 8-(4-chlorophenylthio)-guanosine 3':5'-cyclic monophosphate (8-pCPT-cyclic GMP; 0.2 mM) without affecting the activation of PKA by (Sp)-5, 6-dichloro-1-beta-D-ribofurano-sylbenzimidazole- 3':5'-cyclic monophosphorothioate ((Sp)-5,6-DCl-cyclic BiMPS; 0.1 mM). 4. (Rp)-8-bromo-PET-cyclic GMPS was not hydrolysed by the cyclic GMP specific phosphodiesterase (PDE) type V from bovine aorta but potently inhibited this PDE. 5. The corresponding sulphur free cyclic nucleotide of the two studied phosphorothioate derivatives, 8-bromo-beta-phenyl-1, N2-ethenoguanosine-3':5'-cyclic monophosphate (8-bromo-PET-cyclic GMP), had no effect on electrically-induced [3H]-noradrenaline release but concentration-dependently decreased the stimulation-induced vasoconstriction. (Rp)-8-bromo-PET-cyclic GMPS (3 microM) shifted the vasoconstriction response to the right without affecting stimulation evoked tritium overflow. 6. The NO donor, 3-morpholinosydnonimine (SIN-1) relaxed rat tail arteries precontracted with phenylephrine (1 microM). The SIN-1 concentration-relaxation curve was shifted in a parallel manner to the right by (Rp)-8-bromo-PET-cyclic GMPS, suggesting that the relaxation was mediated by a cyclic GMP/PKG-dependent mechanism. 7. The [3H]-noradrenaline release-enhancing effect and stimulation-induced decrease in vasoconstriction of forskolin were unaffected by (Rp)-8-bromo-PET-cyclic GMPS. Moreover, the forskolin concentration-relaxation curve was not changed in the presence of the PKG inhibitor, suggesting a high selectivity in intact cells for PKG- over PKA-mediated effects. 8. The results obtained indicate that (Rp)-8-bromo-PET-cyclic GMPS presently is the most potent and selective inhibitor of PKG and is helpful in distinguishing between cyclic GMP and cyclic AMP messenger pathways activation. Therefore, this phosphorothioate stereomer may be a useful tool for studying the role of cyclic GMP in vitro.

Full text

PDF
3110

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bucher B., Ouedraogo S., Tschöpl M., Paya D., Stoclet J. C. Role of the L-arginine-NO pathway and of cyclic GMP in electrical field-induced noradrenaline release and vasoconstriction in the rat tail artery. Br J Pharmacol. 1992 Dec;107(4):976–982. doi: 10.1111/j.1476-5381.1992.tb13394.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Butt E., Abel K., Krieger M., Palm D., Hoppe V., Hoppe J., Walter U. cAMP- and cGMP-dependent protein kinase phosphorylation sites of the focal adhesion vasodilator-stimulated phosphoprotein (VASP) in vitro and in intact human platelets. J Biol Chem. 1994 May 20;269(20):14509–14517. [PubMed] [Google Scholar]
  3. Butt E., Eigenthaler M., Genieser H. G. (Rp)-8-pCPT-cGMPS, a novel cGMP-dependent protein kinase inhibitor. Eur J Pharmacol. 1994 Oct 14;269(2):265–268. doi: 10.1016/0922-4106(94)90095-7. [DOI] [PubMed] [Google Scholar]
  4. Butt E., Geiger J., Jarchau T., Lohmann S. M., Walter U. The cGMP-dependent protein kinase--gene, protein, and function. Neurochem Res. 1993 Jan;18(1):27–42. doi: 10.1007/BF00966920. [DOI] [PubMed] [Google Scholar]
  5. Butt E., Nolte C., Schulz S., Beltman J., Beavo J. A., Jastorff B., Walter U. Analysis of the functional role of cGMP-dependent protein kinase in intact human platelets using a specific activator 8-para-chlorophenylthio-cGMP. Biochem Pharmacol. 1992 Jun 23;43(12):2591–2600. doi: 10.1016/0006-2952(92)90148-c. [DOI] [PubMed] [Google Scholar]
  6. Butt E., van Bemmelen M., Fischer L., Walter U., Jastorff B. Inhibition of cGMP-dependent protein kinase by (Rp)-guanosine 3',5'-monophosphorothioates. FEBS Lett. 1990 Apr 9;263(1):47–50. doi: 10.1016/0014-5793(90)80702-k. [DOI] [PubMed] [Google Scholar]
  7. Böhme E., Grossmann G., Herz J., Mülsch A., Spies C., Schultz G. Regulation of cyclic GMP formation by soluble guanylate cyclase: stimulation by NO-containing compounds. Adv Cyclic Nucleotide Protein Phosphorylation Res. 1984;17:259–266. [PubMed] [Google Scholar]
  8. Cheng Y., Prusoff W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973 Dec 1;22(23):3099–3108. doi: 10.1016/0006-2952(73)90196-2. [DOI] [PubMed] [Google Scholar]
  9. Dostmann W. R., Taylor S. S., Genieser H. G., Jastorff B., Døskeland S. O., Ogreid D. Probing the cyclic nucleotide binding sites of cAMP-dependent protein kinases I and II with analogs of adenosine 3',5'-cyclic phosphorothioates. J Biol Chem. 1990 Jun 25;265(18):10484–10491. [PubMed] [Google Scholar]
  10. Eigenthaler M., Nolte C., Halbrügge M., Walter U. Concentration and regulation of cyclic nucleotides, cyclic-nucleotide-dependent protein kinases and one of their major substrates in human platelets. Estimating the rate of cAMP-regulated and cGMP-regulated protein phosphorylation in intact cells. Eur J Biochem. 1992 Apr 15;205(2):471–481. doi: 10.1111/j.1432-1033.1992.tb16803.x. [DOI] [PubMed] [Google Scholar]
  11. Halbrügge M., Friedrich C., Eigenthaler M., Schanzenbächer P., Walter U. Stoichiometric and reversible phosphorylation of a 46-kDa protein in human platelets in response to cGMP- and cAMP-elevating vasodilators. J Biol Chem. 1990 Feb 25;265(6):3088–3093. [PubMed] [Google Scholar]
  12. Kaczmarek L. K., Jennings K. R., Strumwasser F., Nairn A. C., Walter U., Wilson F. D., Greengard P. Microinjection of catalytic subunit of cyclic AMP-dependent protein kinase enhances calcium action potentials of bag cell neurons in cell culture. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7487–7491. doi: 10.1073/pnas.77.12.7487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Keilbach A., Ruth P., Hofmann F. Detection of cGMP dependent protein kinase isozymes by specific antibodies. Eur J Biochem. 1992 Sep 1;208(2):467–473. doi: 10.1111/j.1432-1033.1992.tb17209.x. [DOI] [PubMed] [Google Scholar]
  14. Lincoln T. M., Cornwell T. L. Intracellular cyclic GMP receptor proteins. FASEB J. 1993 Feb 1;7(2):328–338. doi: 10.1096/fasebj.7.2.7680013. [DOI] [PubMed] [Google Scholar]
  15. Lugnier C., Schoeffter P., Le Bec A., Strouthou E., Stoclet J. C. Selective inhibition of cyclic nucleotide phosphodiesterases of human, bovine and rat aorta. Biochem Pharmacol. 1986 May 15;35(10):1743–1751. doi: 10.1016/0006-2952(86)90333-3. [DOI] [PubMed] [Google Scholar]
  16. Ouedraogo S., Stoclet J. C., Bucher B. Effects of cyclic AMP and analogues on neurogenic transmission in the rat tail artery. Br J Pharmacol. 1994 Feb;111(2):625–631. doi: 10.1111/j.1476-5381.1994.tb14782.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ouedraogo S., Tschöpl M., Stoclet J. C., Bucher B. Effects of cyclic GMP and analogues on neurogenic transmission in the rat tail artery. Br J Pharmacol. 1994 Jul;112(3):867–872. doi: 10.1111/j.1476-5381.1994.tb13160.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Roskoski R., Jr Assays of protein kinase. Methods Enzymol. 1983;99:3–6. doi: 10.1016/0076-6879(83)99034-1. [DOI] [PubMed] [Google Scholar]
  19. Rothermel J. D., Stec W. J., Baraniak J., Jastorff B., Botelho L. H. Inhibition of glycogenolysis in isolated rat hepatocytes by the Rp diastereomer of adenosine cyclic 3',5'-phosphorothioate. J Biol Chem. 1983 Oct 25;258(20):12125–12128. [PubMed] [Google Scholar]
  20. Sandberg M., Butt E., Nolte C., Fischer L., Halbrügge M., Beltman J., Jahnsen T., Genieser H. G., Jastorff B., Walter U. Characterization of Sp-5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole- 3',5'-monophosphorothioate (Sp-5,6-DCl-cBiMPS) as a potent and specific activator of cyclic-AMP-dependent protein kinase in cell extracts and intact cells. Biochem J. 1991 Oct 15;279(Pt 2):521–527. doi: 10.1042/bj2790521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sandberg M., Natarajan V., Ronander I., Kalderon D., Walter U., Lohmann S. M., Jahnsen T. Molecular cloning and predicted full-length amino acid sequence of the type I beta isozyme of cGMP-dependent protein kinase from human placenta. Tissue distribution and developmental changes in rat. FEBS Lett. 1989 Sep 25;255(2):321–329. doi: 10.1016/0014-5793(89)81114-7. [DOI] [PubMed] [Google Scholar]
  22. Sekhar K. R., Hatchett R. J., Shabb J. B., Wolfe L., Francis S. H., Wells J. N., Jastorff B., Butt E., Chakinala M. M., Corbin J. D. Relaxation of pig coronary arteries by new and potent cGMP analogs that selectively activate type I alpha, compared with type I beta, cGMP-dependent protein kinase. Mol Pharmacol. 1992 Jul;42(1):103–108. [PubMed] [Google Scholar]
  23. Wallenstein S., Zucker C. L., Fleiss J. L. Some statistical methods useful in circulation research. Circ Res. 1980 Jul;47(1):1–9. doi: 10.1161/01.res.47.1.1. [DOI] [PubMed] [Google Scholar]
  24. Walter U., Miller P., Wilson F., Menkes D., Greengard P. Immunological distinction between guanosine 3':5'-monophosphate-dependent and adenosine 3':5'-monophosphate-dependent protein kinases. J Biol Chem. 1980 Apr 25;255(8):3757–3762. [PubMed] [Google Scholar]
  25. Walter U. Physiological role of cGMP and cGMP-dependent protein kinase in the cardiovascular system. Rev Physiol Biochem Pharmacol. 1989;113:41–88. doi: 10.1007/BFb0032675. [DOI] [PubMed] [Google Scholar]
  26. Wernet W., Flockerzi V., Hofmann F. The cDNA of the two isoforms of bovine cGMP-dependent protein kinase. FEBS Lett. 1989 Jul 17;251(1-2):191–196. doi: 10.1016/0014-5793(89)81453-x. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES