Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Dec;116(8):3205–3210. doi: 10.1111/j.1476-5381.1995.tb15125.x

Relationship between morphine analgesia and cortical extracellular fluid levels of morphine and its metabolites in the rat: a microdialysis study.

M J Barjavel 1, J M Scherrmann 1, H N Bhargava 1
PMCID: PMC1909170  PMID: 8719797

Abstract

1. The effect of morphine (10 mg kg-1, s.c.) on the analgesic response measured by the tail-flick method was determined in male Sprague-Dawley rats. The analgesic response to morphine was correlated with the levels of morphine and its metabolites collected by microdialysis from the cortical extracellular fluid (ECF). 2. The analgesic response to morphine lasted for 4 h. The concentration of morphine during a 4 h collection period was significantly higher than the metabolites concentration. The relative concentration of morphine and its metabolites during the 4 h period was 70 and 30% respectively. 3. The analgesic response during the first 2.25 h period accounted for more than 82% of the total analgesia as determined by the area under the time-response curve (AUC). The concentration of morphine and its metabolites during the same period were 78 and 22%, respectively, but they did not differ during the 2.25-4.0 h period (52 and 48%). 4. The half-life for morphine and its metabolites were similar, the maximal achievable concentration Cmax and AUC0-4 h were lower for metabolites but the time to reach maximum concentration was higher for morphine metabolites than for morphine. The ratio of the concentration of metabolites to the concentration of morphine in the cortical ECF increased with time whereas the analgesic response to morphine decreased with time. 5. At several time points following morphine injection even though the levels of morphine were the same, the concentration of metabolites (mainly M3G) differed and thus the ratio [metabolite/morphine]. A plot of [metabolite]/[morphine] vs. analgesia gave a high correlation coefficient. Since M3G has been shown to be antianalgesic and is the only metabolite of morphine in the rat, it is concluded that the levels of this metabolite may regulate the analgesic effect of morphine in the rat.

Full text

PDF
3205

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbott F. V., Palmour R. M. Morphine-6-glucuronide: analgesic effects and receptor binding profile in rats. Life Sci. 1988;43(21):1685–1695. doi: 10.1016/0024-3205(88)90479-1. [DOI] [PubMed] [Google Scholar]
  2. Barjavel M., Sandouk P., Plotkine M., Scherrmann J. M. Morphine and morphine metabolite kinetics in the rat brain as assessed by transcortical microdialysis. Life Sci. 1994;55(16):1301–1308. doi: 10.1016/0024-3205(94)90069-8. [DOI] [PubMed] [Google Scholar]
  3. Bhargava H. N., Bansinath M., Das S., Matwyshyn G. A. Multiple opiate receptors and pharmacological response to morphine in rats maintained on diets differing in protein concentration. Gen Pharmacol. 1987;18(5):505–512. doi: 10.1016/0306-3623(87)90071-1. [DOI] [PubMed] [Google Scholar]
  4. Bigler D., Christensen C. B., Eriksen J., Jensen N. H. Morphine, morphine-6-glucuronide and morphine-3-glucuronide concentrations in plasma and cerebrospinal fluid during long-term high-dose intrathecal morphine administration. Pain. 1990 Apr;41(1):15–18. doi: 10.1016/0304-3959(90)91103-P. [DOI] [PubMed] [Google Scholar]
  5. Bowsher D. Paradoxical pain. BMJ. 1993 Feb 20;306(6876):473–474. doi: 10.1136/bmj.306.6876.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carrupt P. A., Testa B., Bechalany A., el Tayar N., Descas P., Perrissoud D. Morphine 6-glucuronide and morphine 3-glucuronide as molecular chameleons with unexpected lipophilicity. J Med Chem. 1991 Apr;34(4):1272–1275. doi: 10.1021/jm00108a005. [DOI] [PubMed] [Google Scholar]
  7. Coughtrie M. W., Ask B., Rane A., Burchell B., Hume R. The enantioselective glucuronidation of morphine in rats and humans. Evidence for the involvement of more than one UDP-glucuronosyltransferase isoenzyme. Biochem Pharmacol. 1989 Oct 1;38(19):3273–3280. doi: 10.1016/0006-2952(89)90625-4. [DOI] [PubMed] [Google Scholar]
  8. Curtis D. R., Duggan A. W. The depression of spinal inhibition by morphine. Agents Actions. 1969 Jul;1(1):14–19. doi: 10.1007/BF01990015. [DOI] [PubMed] [Google Scholar]
  9. Di Chiara G. In-vivo brain dialysis of neurotransmitters. Trends Pharmacol Sci. 1990 Mar;11(3):116–121. doi: 10.1016/0165-6147(90)90197-g. [DOI] [PubMed] [Google Scholar]
  10. Ekblom M., Gårdmark M., Hammarlund-Udenaes M. Pharmacokinetics and pharmacodynamics of morphine-3-glucuronide in rats and its influence on the antinociceptive effect of morphine. Biopharm Drug Dispos. 1993 Jan;14(1):1–11. doi: 10.1002/bdd.2510140102. [DOI] [PubMed] [Google Scholar]
  11. Frances B., Gout R., Monsarrat B., Cros J., Zajac J. M. Further evidence that morphine-6 beta-glucuronide is a more potent opioid agonist than morphine. J Pharmacol Exp Ther. 1992 Jul;262(1):25–31. [PubMed] [Google Scholar]
  12. Gong Q. L., Hedner J., Björkman R., Hedner T. Morphine-3-glucuronide may functionally antagonize morphine-6-glucuronide induced antinociception and ventilatory depression in the rat. Pain. 1992 Feb;48(2):249–255. doi: 10.1016/0304-3959(92)90065-J. [DOI] [PubMed] [Google Scholar]
  13. Gong Q. L., Hedner T., Hedner J., Björkman R., Nordberg G. Antinociceptive and ventilatory effects of the morphine metabolites: morphine-6-glucuronide and morphine-3-glucuronide. Eur J Pharmacol. 1991 Jan 25;193(1):47–56. doi: 10.1016/0014-2999(91)90199-z. [DOI] [PubMed] [Google Scholar]
  14. Goucke C. R., Hackett L. P., Ilett K. F. Concentrations of morphine, morphine-6-glucuronide and morphine-3-glucuronide in serum and cerebrospinal fluid following morphine administration to patients with morphine-resistant pain. Pain. 1994 Feb;56(2):145–149. doi: 10.1016/0304-3959(94)90088-4. [DOI] [PubMed] [Google Scholar]
  15. Hand C. W., Blunnie W. P., Claffey L. P., McShane A. J., McQuay H. J., Moore R. A. Potential analgesic contribution from morphine-6-glucuronide in CSF. Lancet. 1987 Nov 21;2(8569):1207–1208. doi: 10.1016/s0140-6736(87)91341-9. [DOI] [PubMed] [Google Scholar]
  16. Hanna M. H., Peat S. J., Woodham M., Knibb A., Fung C. Analgesic efficacy and CSF pharmacokinetics of intrathecal morphine-6-glucuronide: comparison with morphine. Br J Anaesth. 1990 May;64(5):547–550. doi: 10.1093/bja/64.5.547. [DOI] [PubMed] [Google Scholar]
  17. Kuo C. K., Hanioka N., Hoshikawa Y., Oguri K., Yoshimura H. Species difference of site-selective glucuronidation of morphine. J Pharmacobiodyn. 1991 Apr;14(4):187–193. doi: 10.1248/bpb1978.14.187. [DOI] [PubMed] [Google Scholar]
  18. Labella F. S., Pinsky C., Havlicek V. Morphine derivatives with diminished opiate receptor potency show enhanced central excitatory activity. Brain Res. 1979 Oct 5;174(2):263–271. doi: 10.1016/0006-8993(79)90849-7. [DOI] [PubMed] [Google Scholar]
  19. Matos F. F., Rollema H., Basbaum A. I. Simultaneous measurement of extracellular morphine and serotonin in brain tissue and CSF by microdialysis in awake rats. J Neurochem. 1992 May;58(5):1773–1781. doi: 10.1111/j.1471-4159.1992.tb10053.x. [DOI] [PubMed] [Google Scholar]
  20. Murphey L. J., Olsen G. D. Morphine-6-beta-D-glucuronide respiratory pharmacodynamics in the neonatal guinea pig. J Pharmacol Exp Ther. 1994 Jan;268(1):110–116. [PubMed] [Google Scholar]
  21. Osborne R., Joel S., Trew D., Slevin M. Analgesic activity of morphine-6-glucuronide. Lancet. 1988 Apr 9;1(8589):828–828. doi: 10.1016/s0140-6736(88)91691-1. [DOI] [PubMed] [Google Scholar]
  22. Pacifici G. M., Rane A. Distribution of UDP-glucuronyltransferase in different human foetal tissues. Br J Clin Pharmacol. 1982 May;13(5):732–735. doi: 10.1111/j.1365-2125.1982.tb01446.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pasternak G. W., Bodnar R. J., Clark J. A., Inturrisi C. E. Morphine-6-glucuronide, a potent mu agonist. Life Sci. 1987 Dec 28;41(26):2845–2849. doi: 10.1016/0024-3205(87)90431-0. [DOI] [PubMed] [Google Scholar]
  24. Paul D., Standifer K. M., Inturrisi C. E., Pasternak G. W. Pharmacological characterization of morphine-6 beta-glucuronide, a very potent morphine metabolite. J Pharmacol Exp Ther. 1989 Nov;251(2):477–483. [PubMed] [Google Scholar]
  25. Poulain P., Ribon A. M., Hanks G. W., Hoskin P. J., Aherne G. W., Chapman D. J. CSF concentrations of morphine-6-glucuronide after oral administration of morphine. Pain. 1990 Apr;41(1):115–116. doi: 10.1016/0304-3959(90)91116-Z. [DOI] [PubMed] [Google Scholar]
  26. Robinson J. H., Deadwyler S. A. Morphine excitation: effects on field potentials recorded in the in vitro hippocampal slice. Neuropharmacology. 1980 Jun;19(6):507–514. doi: 10.1016/0028-3908(80)90019-2. [DOI] [PubMed] [Google Scholar]
  27. Sandouk P., Serrie A., Scherrmann J. M., Langlade A., Bourre J. M. Presence of morphine metabolites in human cerebrospinal fluid after intracerebroventricular administration of morphine. Eur J Drug Metab Pharmacokinet. 1991;Spec No 3:166–171. [PubMed] [Google Scholar]
  28. Schneider J. J., Ravenscroft P. J., Cavenagh J. D., Brown A. M., Bradley J. P. Plasma morphine-3-glucuronide, morphine-6-glucuronide and morphine concentrations in patients receiving long-term epidural morphine. Br J Clin Pharmacol. 1992 Nov;34(5):431–433. doi: 10.1111/j.1365-2125.1992.tb05651.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Shimomura K., Kamata O., Ueki S., Ida S., Oguri K. Analgesic effect of morphine glucuronides. Tohoku J Exp Med. 1971 Sep;105(1):45–52. doi: 10.1620/tjem.105.45. [DOI] [PubMed] [Google Scholar]
  30. Smith M. T., Watt J. A., Cramond T. Morphine-3-glucuronide--a potent antagonist of morphine analgesia. Life Sci. 1990;47(6):579–585. doi: 10.1016/0024-3205(90)90619-3. [DOI] [PubMed] [Google Scholar]
  31. Ståhle L. Pharmacokinetic estimations from microdialysis data. Eur J Clin Pharmacol. 1992;43(3):289–294. doi: 10.1007/BF02333025. [DOI] [PubMed] [Google Scholar]
  32. Sullivan A. F., McQuay H. J., Bailey D., Dickenson A. H. The spinal antinociceptive actions of morphine metabolites morphine-6-glucuronide and normorphine in the rat. Brain Res. 1989 Mar 20;482(2):219–224. doi: 10.1016/0006-8993(89)91184-0. [DOI] [PubMed] [Google Scholar]
  33. Wahlström A., Lundin L. G., Ask B., Rane A. The sensitivity to noxious heat in relation to brain and liver opioid glucuronidation in inbred strains of mice. Pain. 1989 Jul;38(1):71–75. doi: 10.1016/0304-3959(89)90075-4. [DOI] [PubMed] [Google Scholar]
  34. Wahlström A., Winblad B., Bixo M., Rane A. Human brain metabolism of morphine and naloxone. Pain. 1988 Nov;35(2):121–127. doi: 10.1016/0304-3959(88)90219-9. [DOI] [PubMed] [Google Scholar]
  35. Woolf C. J. Intrathecal high dose morphine produces hyperalgesia in the rat. Brain Res. 1981 Mar 30;209(2):491–495. doi: 10.1016/0006-8993(81)90176-1. [DOI] [PubMed] [Google Scholar]
  36. Yeh S. Y., Gorodetzky C. W., Krebs H. A. Isolation and identification of morphine 3- and 6-glucuronides, morphine 3,6-diglucuronide, morphine 3-ethereal sulfate, normorphine, and normorphine 6-glucuronide as morphine metabolites in humans. J Pharm Sci. 1977 Sep;66(9):1288–1293. doi: 10.1002/jps.2600660921. [DOI] [PubMed] [Google Scholar]
  37. Yoshimura H., Ida S., Oguri K., Tsukamoto H. Biochemical basis for analgesic activity of morphine-6-glucuronide. I. Penetration of morphine-6-glucuronide in the brain of rats. Biochem Pharmacol. 1973 Jun 15;22(12):1423–1430. doi: 10.1016/0006-2952(73)90320-1. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES