Abstract
1. The ligand binding site of subtype mGluR4a of the metabotropic glutamate receptor family was characterized by using [3H]-L-2-amino-4-phosphonobutyrate ([3H]-L-AP4) binding. 2. Specific [3H]-L-AP4 binding to membranes prepared from baby hamster kidney (BHK) cells transfected with a vector encoding mGluR4a accounted for 60-70% of the total binding whereas no specific binding of [3H]-L-AP4 was observed to membranes prepared from BHK cells expressing the vector only. 3. Specific binding of [3H]-L-AP4 to mGluR4a was detectable at 0 degree C, was saturated with 10 min and enhanced by Cl(-)-ions but not by divalent cations (Mg2+, Ca2+, Mn2+). 4. [3H]-L-AP4 binding showed a maximal binding density (Bmax) of 3.0 +/- 0.5 pmol mg-1 protein and an affinity (KD) of 441 nM. A modest decrease in affinity was observed in the presence of 0.1 mM guanosine-5'-O-(3-thio)trisphosphate-gamma-S, the KD being 761 nM and the Bmax 3.4 +/- 0.6 pmol mg-1 protein. 5. The following rank order of affinity for mGluR4a was observed: L-AP4 = L-serine-O-phosphate > glutamate = (2S,1S,2S)-2-(carboxycyclopropyl)-glycine > 1-amino-3-(phosphonomethylene)cyclobitanecar-boxylate > > (1S,3R)-1-aminocyclopentane-1,3-dicarboxylate = quisqualate > ibotenate. 6. A highly significant correlation was observed between the potencies of the compounds to inhibit forskolin-stimulated cyclic AMP-formation in BHK cells expressing mGluR4a and the affinity for displacement of [3H]-L-AP4 binding from mGluR4a suggesting that this binding site is functionally relevant. 7. In conclusion, [3H]-L-AP4 is a suitable radioligand for characterizing mGluR4a when expressed in BHK cells. Interestingly, a significant correlation was found between the ability of various compounds to displace [3H]-L-AP4 binding from mGluR4a and the previously observed potencies for inhibition of synaptic transmission via L-AP4 sensitive glutamatergic pathways. These data support the hypothesis that the L-AP4 receptor is contained within the mGluR family.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Butcher S. P., Collins J. F., Roberts P. J. Characterization of the binding of DL-[3H]-2-amino-4-phosphonobutyrate to L-glutamate-sensitive sites on rat brain synaptic membranes. Br J Pharmacol. 1983 Oct;80(2):355–364. doi: 10.1111/j.1476-5381.1983.tb10041.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Butcher S. P., Roberts P. J., Collins J. F. DL-2-[3,4-3H]amino-4-phosphonobutyrate binding sites in the rat hippocampus: distribution and possible physiological role. Brain Res. 1987 Sep 1;419(1-2):294–302. doi: 10.1016/0006-8993(87)90596-8. [DOI] [PubMed] [Google Scholar]
- Catania M. V., De Socarraz H., Penney J. B., Young A. B. Metabotropic glutamate receptor heterogeneity in rat brain. Mol Pharmacol. 1994 Apr;45(4):626–636. [PubMed] [Google Scholar]
- Caulfield M. P. Muscarinic receptors--characterization, coupling and function. Pharmacol Ther. 1993 Jun;58(3):319–379. doi: 10.1016/0163-7258(93)90027-b. [DOI] [PubMed] [Google Scholar]
- Crooks S. L., Robinson M. B., Koerner J. F., Johnson R. L. Cyclic analogues of 2-amino-4-phosphonobutanoic acid (APB) and their inhibition of hippocampal excitatory transmission and displacement of [3H]APB binding. J Med Chem. 1986 Oct;29(10):1988–1995. doi: 10.1021/jm00160a031. [DOI] [PubMed] [Google Scholar]
- Dohlman H. G., Thorner J., Caron M. G., Lefkowitz R. J. Model systems for the study of seven-transmembrane-segment receptors. Annu Rev Biochem. 1991;60:653–688. doi: 10.1146/annurev.bi.60.070191.003253. [DOI] [PubMed] [Google Scholar]
- Duckles S. P., Budai D. Stimulation intensity as critical determinant of presynaptic receptor effectiveness. Trends Pharmacol Sci. 1990 Nov;11(11):440–443. doi: 10.1016/0165-6147(90)90124-q. [DOI] [PubMed] [Google Scholar]
- Duvoisin R. M., Zhang C., Ramonell K. A novel metabotropic glutamate receptor expressed in the retina and olfactory bulb. J Neurosci. 1995 Apr;15(4):3075–3083. doi: 10.1523/JNEUROSCI.15-04-03075.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fagg G. E., Lanthorn T. H. Cl-/Ca2+-dependent L-glutamate binding sites do not correspond to 2-amino-4-phosphonobutanoate-sensitive excitatory amino acid receptors. Br J Pharmacol. 1985 Nov;86(3):743–751. doi: 10.1111/j.1476-5381.1985.tb08954.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Forsythe I. D., Clements J. D. Presynaptic glutamate receptors depress excitatory monosynaptic transmission between mouse hippocampal neurones. J Physiol. 1990 Oct;429:1–16. doi: 10.1113/jphysiol.1990.sp018240. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayashi Y., Sekiyama N., Nakanishi S., Jane D. E., Sunter D. C., Birse E. F., Udvarhelyi P. M., Watkins J. C. Analysis of agonist and antagonist activities of phenylglycine derivatives for different cloned metabotropic glutamate receptor subtypes. J Neurosci. 1994 May;14(5 Pt 2):3370–3377. doi: 10.1523/JNEUROSCI.14-05-03370.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayashi Y., Tanabe Y., Aramori I., Masu M., Shimamoto K., Ohfune Y., Nakanishi S. Agonist analysis of 2-(carboxycyclopropyl)glycine isomers for cloned metabotropic glutamate receptor subtypes expressed in Chinese hamster ovary cells. Br J Pharmacol. 1992 Oct;107(2):539–543. doi: 10.1111/j.1476-5381.1992.tb12780.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoyer D., Boddeke H. W. Partial agonists, full agonists, antagonists: dilemmas of definition. Trends Pharmacol Sci. 1993 Jul;14(7):270–275. doi: 10.1016/0165-6147(93)90129-8. [DOI] [PubMed] [Google Scholar]
- Jockers R., Linder M. E., Hohenegger M., Nanoff C., Bertin B., Strosberg A. D., Marullo S., Freissmuth M. Species difference in the G protein selectivity of the human and bovine A1-adenosine receptor. J Biol Chem. 1994 Dec 23;269(51):32077–32084. [PubMed] [Google Scholar]
- Kahle J. S., Cotman C. W. L-2-amino-4-phosphonobutanoic acid and 1S,3R-1-aminocyclopentane-1,3-dicarboxylic acid reduce paired-pulse depression recorded from medial perforant path in the dentate gyrus of rat hippocampal slices. J Pharmacol Exp Ther. 1993 Jul;266(1):207–215. [PubMed] [Google Scholar]
- Koerner J. F., Cotman C. W. Micromolar L-2-amino-4-phosphonobutyric acid selectively inhibits perforant path synapses from lateral entorhinal cortex. Brain Res. 1981 Jul 6;216(1):192–198. doi: 10.1016/0006-8993(81)91288-9. [DOI] [PubMed] [Google Scholar]
- Kristensen P., Suzdak P. D., Thomsen C. Expression pattern and pharmacology of the rat type IV metabotropic glutamate receptor. Neurosci Lett. 1993 Jun 11;155(2):159–162. doi: 10.1016/0304-3940(93)90697-j. [DOI] [PubMed] [Google Scholar]
- Mahan L. C., McVittie L. D., Smyk-Randall E. M., Nakata H., Monsma F. J., Jr, Gerfen C. R., Sibley D. R. Cloning and expression of an A1 adenosine receptor from rat brain. Mol Pharmacol. 1991 Jul;40(1):1–7. [PubMed] [Google Scholar]
- Monaghan D. T., Bridges R. J., Cotman C. W. The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu Rev Pharmacol Toxicol. 1989;29:365–402. doi: 10.1146/annurev.pa.29.040189.002053. [DOI] [PubMed] [Google Scholar]
- Monaghan D. T., McMills M. C., Chamberlin A. R., Cotman C. W. Synthesis of [3H]2-amino-4-phosphonobutyric acid and characterization of its binding to rat brain membranes: a selective ligand for the chloride/calcium-dependent class of L-glutamate binding sites. Brain Res. 1983 Nov 14;278(1-2):137–144. doi: 10.1016/0006-8993(83)90232-9. [DOI] [PubMed] [Google Scholar]
- Nakajima Y., Iwakabe H., Akazawa C., Nawa H., Shigemoto R., Mizuno N., Nakanishi S. Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for L-2-amino-4-phosphonobutyrate. J Biol Chem. 1993 Jun 5;268(16):11868–11873. [PubMed] [Google Scholar]
- O'Hara P. J., Sheppard P. O., Thøgersen H., Venezia D., Haldeman B. A., McGrane V., Houamed K. M., Thomsen C., Gilbert T. L., Mulvihill E. R. The ligand-binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins. Neuron. 1993 Jul;11(1):41–52. doi: 10.1016/0896-6273(93)90269-w. [DOI] [PubMed] [Google Scholar]
- Okamoto N., Hori S., Akazawa C., Hayashi Y., Shigemoto R., Mizuno N., Nakanishi S. Molecular characterization of a new metabotropic glutamate receptor mGluR7 coupled to inhibitory cyclic AMP signal transduction. J Biol Chem. 1994 Jan 14;269(2):1231–1236. [PubMed] [Google Scholar]
- Peterson N. L., Kroona H. B., Johnson R. L., Koerner J. F. Activity of the conformationally rigid 2-amino-4-phosphonobutanoic acid (AP4) analogue (RS)-1-amino-3-(phosphonomethylene)cyclobutane-1-carboxylic acid (cyclobutylene AP5) on evoked responses in the perforant pathway of rat hippocampus. Brain Res. 1992 Jan 31;571(1):162–164. doi: 10.1016/0006-8993(92)90525-e. [DOI] [PubMed] [Google Scholar]
- Pin J. P., Bockaert J., Recasesn M. The Ca2+/C1- dependent L-[3H]glutamate binding: a new receptor or a particular transport process? FEBS Lett. 1984 Sep 17;175(1):31–36. doi: 10.1016/0014-5793(84)80563-3. [DOI] [PubMed] [Google Scholar]
- Pin J. P., Joly C., Heinemann S. F., Bockaert J. Domains involved in the specificity of G protein activation in phospholipase C-coupled metabotropic glutamate receptors. EMBO J. 1994 Jan 15;13(2):342–348. doi: 10.1002/j.1460-2075.1994.tb06267.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rainnie D. G., Shinnick-Gallagher P. Trans-ACPD and L-APB presynaptically inhibit excitatory glutamatergic transmission in the basolateral amygdala (BLA). Neurosci Lett. 1992 May 11;139(1):87–91. doi: 10.1016/0304-3940(92)90864-4. [DOI] [PubMed] [Google Scholar]
- Recasens M., Pin J. P., Bockaert J. Chloride transport blockers inhibit the chloride-dependent glutamate binding to rat brain membranes. Neurosci Lett. 1987 Feb 24;74(2):211–216. doi: 10.1016/0304-3940(87)90151-0. [DOI] [PubMed] [Google Scholar]
- Robinson M. B., Crooks S. L., Johnson R. L., Koerner J. F. Displacement of DL-[3H]-2-amino-4-phosphonobutanoic acid ( [3H]APB) binding with methyl-substituted APB analogues and glutamate agonists. Biochemistry. 1985 May 7;24(10):2401–2405. doi: 10.1021/bi00331a002. [DOI] [PubMed] [Google Scholar]
- Saugstad J. A., Kinzie J. M., Mulvihill E. R., Segerson T. P., Westbrook G. L. Cloning and expression of a new member of the L-2-amino-4-phosphonobutyric acid-sensitive class of metabotropic glutamate receptors. Mol Pharmacol. 1994 Mar;45(3):367–372. [PubMed] [Google Scholar]
- Schoepp D. D., True R. A. 1S,3R-ACPD-sensitive (metabotropic) [3H]glutamate receptor binding in membranes. Neurosci Lett. 1992 Sep 28;145(1):100–104. doi: 10.1016/0304-3940(92)90213-q. [DOI] [PubMed] [Google Scholar]
- Tanabe Y., Nomura A., Masu M., Shigemoto R., Mizuno N., Nakanishi S. Signal transduction, pharmacological properties, and expression patterns of two rat metabotropic glutamate receptors, mGluR3 and mGluR4. J Neurosci. 1993 Apr;13(4):1372–1378. doi: 10.1523/JNEUROSCI.13-04-01372.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomsen C., Bau A., Faarup P., Foged C., Kanstrup A., Suzdak P. D. Effects of bromohomoibotenate on metabotropic glutamate receptors. Neuroreport. 1994 Dec 20;5(18):2417–2420. doi: 10.1097/00001756-199412000-00003. [DOI] [PubMed] [Google Scholar]
- Thomsen C., Boel E., Suzdak P. D. Actions of phenylglycine analogs at subtypes of the metabotropic glutamate receptor family. Eur J Pharmacol. 1994 Mar 15;267(1):77–84. doi: 10.1016/0922-4106(94)90227-5. [DOI] [PubMed] [Google Scholar]
- Thomsen C., Hansen L., Suzdak P. D. L-glutamate uptake inhibitors may stimulate phosphoinositide hydrolysis in baby hamster kidney cells expressing mGluR1a via heteroexchange with L-glutamate without direct activation of mGluR1a. J Neurochem. 1994 Dec;63(6):2038–2047. doi: 10.1046/j.1471-4159.1994.63062038.x. [DOI] [PubMed] [Google Scholar]
- Thomsen C., Kristensen P., Mulvihill E., Haldeman B., Suzdak P. D. L-2-amino-4-phosphonobutyrate (L-AP4) is an agonist at the type IV metabotropic glutamate receptor which is negatively coupled to adenylate cyclase. Eur J Pharmacol. 1992 Nov 2;227(3):361–362. doi: 10.1016/0922-4106(92)90018-q. [DOI] [PubMed] [Google Scholar]
- Thomsen C., Suzdak P. D. Serine-O-phosphate has affinity for type IV, but not type I, metabotropic glutamate receptor. Neuroreport. 1993 Sep;4(9):1099–1101. [PubMed] [Google Scholar]
- Zaczek R., Arlis S., Markl A., Murphy T., Drucker H., Coyle J. T. Characteristics of chloride-dependent incorporation of glutamate into brain membranes argue against a receptor binding site. Neuropharmacology. 1987 Apr;26(4):281–287. doi: 10.1016/0028-3908(87)90179-1. [DOI] [PubMed] [Google Scholar]
