Abstract
1. The selective Ca(2+)-activated K+ channel blocker apamin increased extracellular 5-hydroxytryptamine (5-HT) concentrations in the striatum when administered through the microdialysis probe at doses of 0.1 mM and 1 mM. Extracellular dopamine concentrations increased only at the highest dose administered (1 mM). 2. Mast cell degranulating peptide (MCDP), which blocks the dendrotoxin sensitive delayed rectifier (DR) current, increased extracellular concentrations of dopamine at dose of 10 microM-100 microM but had no effect on 5-HT. 3. The non selective K+ channel blocker tetraethylammonium (TEA) induced a dose-dependent (1 mM-10 mM) increase in extracellular dopamine concentrations and an increase in 5-HT which showed little or no dose-dependency. 4. 4-Aminopyridine (4-AP), a blocker with some similar characteristics to MCDP, increased extracellular dopamine concentrations at doses of 10 microM-1 mM, but had no effect on 5-HT. 5. These findings suggest that dopamine release may be modulated by DR-like current and/or A-current K+ channels. However, in view of the similar effects of MCDP and 4-AP at the concentrations used it is more likely that the dendrotoxin-sensitive DR-like current is involved. In contrast, 5-HT release appears to be modulated by Ca(2+)-activated K+ channels.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alkadhi K. A., Hogan Y. H. Effect of calcium on synaptic facilitation by potassium channel blockers in superior cervical ganglion of rat. Neuropharmacology. 1989 Jan;28(1):75–81. doi: 10.1016/0028-3908(89)90071-3. [DOI] [PubMed] [Google Scholar]
- Allgaier C., Repp H., Hertting G. Effect of K+ channel blockers on the alpha 2-adrenoceptor-coupled regulation of electrically evoked noradrenaline release in hippocampus. Naunyn Schmiedebergs Arch Pharmacol. 1993 Jan;347(1):14–20. doi: 10.1007/BF00168766. [DOI] [PubMed] [Google Scholar]
- Anderson A. J., Harvey A. L. Effects of the potassium channel blocking dendrotoxins on acetylcholine release and motor nerve terminal activity. Br J Pharmacol. 1988 Jan;93(1):215–221. doi: 10.1111/j.1476-5381.1988.tb11424.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Banks B. E., Brown C., Burgess G. M., Burnstock G., Claret M., Cocks T. M., Jenkinson D. H. Apamin blocks certain neurotransmitter-induced increases in potassium permeability. Nature. 1979 Nov 22;282(5737):415–417. doi: 10.1038/282415a0. [DOI] [PubMed] [Google Scholar]
- Castle N. A., Haylett D. G., Jenkinson D. H. Toxins in the characterization of potassium channels. Trends Neurosci. 1989 Feb;12(2):59–65. doi: 10.1016/0166-2236(89)90137-9. [DOI] [PubMed] [Google Scholar]
- Damsma G., Biessels P. T., Westerink B. H., De Vries J. B., Horn A. S. Differential effects of 4-aminopyridine and 2,4-diaminopyridine on the in vivo release of acetylcholine and dopamine in freely moving rats measured by intrastriatal dialysis. Eur J Pharmacol. 1988 Jan 5;145(1):15–20. doi: 10.1016/0014-2999(88)90343-3. [DOI] [PubMed] [Google Scholar]
- Ennis C., Minchin M. C. The effect of toxin I, a K+ channel inhibitor, on [3H]noradrenaline release from rat cerebral cortex. Eur J Pharmacol. 1993 Jun 1;248(1):85–88. doi: 10.1016/0926-6917(93)90028-o. [DOI] [PubMed] [Google Scholar]
- Habermann E. Apamin. Pharmacol Ther. 1984;25(2):255–270. doi: 10.1016/0163-7258(84)90046-9. [DOI] [PubMed] [Google Scholar]
- Haj-Dahmane S., Hamon M., Lanfumey L. K+ channel and 5-hydroxytryptamine1A autoreceptor interactions in the rat dorsal raphe nucleus: an in vitro electrophysiological study. Neuroscience. 1991;41(2-3):495–505. doi: 10.1016/0306-4522(91)90344-n. [DOI] [PubMed] [Google Scholar]
- Harvey A. L., Karlsson E. Dendrotoxin from the venom of the green mamba, Dendroaspis angusticeps. A neurotoxin that enhances acetylcholine release at neuromuscular junction. Naunyn Schmiedebergs Arch Pharmacol. 1980 May;312(1):1–6. doi: 10.1007/BF00502565. [DOI] [PubMed] [Google Scholar]
- Hu P. S., Benishin C., Fredholm B. B. Comparison of the effects of four dendrotoxin peptides, 4-aminopyridine and tetraethylammonium on the electrically evoked [3H]noradrenaline release from rat hippocampus. Eur J Pharmacol. 1991 Dec 10;209(1-2):87–93. doi: 10.1016/0014-2999(91)90015-i. [DOI] [PubMed] [Google Scholar]
- Hu P. S., Fredholm B. B. 4-Aminopyridine-induced increase in basal and stimulation-evoked [3H]-NA release in slices from rat hippocampus: Ca2+ sensitivity and presynaptic control. Br J Pharmacol. 1991 Mar;102(3):764–768. doi: 10.1111/j.1476-5381.1991.tb12247.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobs B. L. An animal behavior model for studying central serotonergic synapses. Life Sci. 1976 Sep 15;19(6):777–785. doi: 10.1016/0024-3205(76)90303-9. [DOI] [PubMed] [Google Scholar]
- Jin S., Fredholm B. B. Role of NMDA, AMPA and kainate receptors in mediating glutamate- and 4-AP-induced dopamine and acetylcholine release from rat striatal slices. Neuropharmacology. 1994 Sep;33(9):1039–1048. doi: 10.1016/0028-3908(94)90141-4. [DOI] [PubMed] [Google Scholar]
- Pei Q., Elliott J. M., Grahame-Smith D. G., Zetterström T. Quinine and 4-aminopyridine inhibit the stimulatory output of dopamine in nucleus accumbens and the behavioural activity produced by morphine. Eur J Pharmacol. 1993 Nov 9;249(2):243–246. doi: 10.1016/0014-2999(93)90440-s. [DOI] [PubMed] [Google Scholar]
- Pei Q., Leslie R. A., Grahame-Smith D. G., Zetterström T. S. 5-HT efflux from rat hippocampus in vivo produced by 4-aminopyridine is increased by chronic lithium administration. Neuroreport. 1995 Mar 27;6(5):716–720. doi: 10.1097/00001756-199503270-00003. [DOI] [PubMed] [Google Scholar]
- Routledge C., Gurling J., Wright I. K., Dourish C. T. Neurochemical profile of the selective and silent 5-HT1A receptor antagonist WAY100135: an in vivo microdialysis study. Eur J Pharmacol. 1993 Aug 3;239(1-3):195–202. doi: 10.1016/0014-2999(93)90994-s. [DOI] [PubMed] [Google Scholar]
- Rudy B. Diversity and ubiquity of K channels. Neuroscience. 1988 Jun;25(3):729–749. doi: 10.1016/0306-4522(88)90033-4. [DOI] [PubMed] [Google Scholar]
- Schweitz H., Bidard J. N., Lazdunski M. Purification and pharmacological characterization of peptide toxins from the black mamba (Dendroaspis polylepis) venom. Toxicon. 1990;28(7):847–856. doi: 10.1016/s0041-0101(09)80007-x. [DOI] [PubMed] [Google Scholar]
- Siniscalchi A., Avoli M. Modulation by GABAB receptors of spontaneous synchronous activities induced by 4-aminopyridine in the rat hippocampus. Neurosci Lett. 1992 Dec 14;148(1-2):159–163. doi: 10.1016/0304-3940(92)90829-v. [DOI] [PubMed] [Google Scholar]
- Steketee J. D., Kalivas P. W. Effect of microinjections of apamin into the A10 dopamine region of rats: a behavioral and neurochemical analysis. J Pharmacol Exp Ther. 1990 Aug;254(2):711–719. [PubMed] [Google Scholar]
- Storm J. F. Temporal integration by a slowly inactivating K+ current in hippocampal neurons. Nature. 1988 Nov 24;336(6197):379–381. doi: 10.1038/336379a0. [DOI] [PubMed] [Google Scholar]
- Strong P. N. Potassium channel toxins. Pharmacol Ther. 1990;46(1):137–162. doi: 10.1016/0163-7258(90)90040-9. [DOI] [PubMed] [Google Scholar]
- de Belleroche J., Gardiner I. M. Inhibitory effect of 1,2,3,4-tetrahydro-9-aminoacridine on the depolarization-induced release of GABA from cerebral cortex. Br J Pharmacol. 1988 Aug;94(4):1017–1019. doi: 10.1111/j.1476-5381.1988.tb11615.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
