Abstract
1. (-)-Caryachine, isolated from the plant (Cryptocarya chinensis), increased the contractility of atrial and right ventricular strips and significantly suppressed the reperfusion arrhythmias in adult rabbit heart (ED50 = 1.27 microM). 2. Data obtained by the whole-cell voltage clamp technique has shown that (-)-caryachine causes a negative shift of the steady-state Na channel inactivation and a slower rate of recovery from inactivation. The maximal Na current amplitude decreased to 67 +/- 7%, 29 +/- 8% and 12 +/- 5% after 0.5, 1.5 and 4.5 microM (-)-caryachine, respectively. 3. This agent also had effects on the time- and voltage-dependent K currents. (-)-Caryachine markedly suppressed the 4-AP-sensitive transient outward current (I10). However, it produced very little voltage-dependent shift in inactivation. After 0.5, 1.5 and 4.5 microM of the compound, the respective value of I10 elicited at +60 mV was 80 +/- 7%, 45 +/- 8% and 15 +/- 3%. At higher concentrations, the inward rectifier K current (IK1) was also inhibited but to a much smaller extent. Its slope conductance after 0.5, 1.5 and 4.5 microM (-)-caryachine was reduced to 71 +/- 9%, 51 +/- 12% and 42 +/- 11%, respectively. The outward hump of inward rectification was not changed. 4. In contrast, the L-type Ca current was not significantly changed by (-)-caryachine. 5. Electrophysiological studies in perfused whole heart preparations revealed that (-)-caryachine increased the intra-atrial conduction interval and also prolonged the atrial refractory period. No proarrhythmic effects were induced during the infusion of this compound (up to 13.5 microM). 6. We conclude that (-)-caryachine predominantly blocks the Na and I10 currents. These changes alter the electrophysiological properties of the heart and terminate the induced ventricular arrhythmias. The relatively selective I10 inhibition, safety margin of Ik1 suppression and lack of effect on Ica-L will provide an opportunity to develop an effective antiarrhythmic agent with positive inotropy as well as low proarrhythmic potential.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnsdorf M. F. Cardiac excitability and antiarrhythmic drugs: a different perspective. J Clin Pharmacol. 1989 May;29(5):395–404. doi: 10.1002/j.1552-4604.1989.tb03351.x. [DOI] [PubMed] [Google Scholar]
- Campbell T. J. Subclassification of class I antiarrhythmic drugs: enhanced relevance after CAST. Cardiovasc Drugs Ther. 1992 Oct;6(5):519–528. doi: 10.1007/BF00055611. [DOI] [PubMed] [Google Scholar]
- Carmeliet E. K+ channels and control of ventricular repolarization in the heart. Fundam Clin Pharmacol. 1993;7(1):19–28. doi: 10.1111/j.1472-8206.1993.tb00214.x. [DOI] [PubMed] [Google Scholar]
- Carmeliet E. Mechanisms and control of repolarization. Eur Heart J. 1993 Nov;14 (Suppl H):3–13. doi: 10.1093/eurheartj/14.suppl_h.3. [DOI] [PubMed] [Google Scholar]
- Carmeliet E., Saikawa T. Shortening of the action potential and reduction of pacemaker activity by lidocaine, quinidine, and procainamide in sheep cardiac purkinje fibers. An effect on Na or K currents? Circ Res. 1982 Feb;50(2):257–272. doi: 10.1161/01.res.50.2.257. [DOI] [PubMed] [Google Scholar]
- Clark R. B., Giles W. R., Imaizumi Y. Properties of the transient outward current in rabbit atrial cells. J Physiol. 1988 Nov;405:147–168. doi: 10.1113/jphysiol.1988.sp017326. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clarkson C. W., Follmer C. H., Ten Eick R. E., Hondeghem L. M., Yeh J. Z. Evidence for two components of sodium channel block by lidocaine in isolated cardiac myocytes. Circ Res. 1988 Nov;63(5):869–878. doi: 10.1161/01.res.63.5.869. [DOI] [PubMed] [Google Scholar]
- Colatsky T. J., Follmer C. H., Starmer C. F. Channel specificity in antiarrhythmic drug action. Mechanism of potassium channel block and its role in suppressing and aggravating cardiac arrhythmias. Circulation. 1990 Dec;82(6):2235–2242. doi: 10.1161/01.cir.82.6.2235. [DOI] [PubMed] [Google Scholar]
- Curtis M. J., Hearse D. J. Ischaemia-induced and reperfusion-induced arrhythmias differ in their sensitivity to potassium: implications for mechanisms of initiation and maintenance of ventricular fibrillation. J Mol Cell Cardiol. 1989 Jan;21(1):21–40. doi: 10.1016/0022-2828(89)91490-9. [DOI] [PubMed] [Google Scholar]
- Escande D., Coulombe A., Faivre J. F., Deroubaix E., Coraboeuf E. Two types of transient outward currents in adult human atrial cells. Am J Physiol. 1987 Jan;252(1 Pt 2):H142–H148. doi: 10.1152/ajpheart.1987.252.1.H142. [DOI] [PubMed] [Google Scholar]
- Giles W. R., Imaizumi Y. Comparison of potassium currents in rabbit atrial and ventricular cells. J Physiol. 1988 Nov;405:123–145. doi: 10.1113/jphysiol.1988.sp017325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giles W. R., van Ginneken A. C. A transient outward current in isolated cells from the crista terminalis of rabbit heart. J Physiol. 1985 Nov;368:243–264. doi: 10.1113/jphysiol.1985.sp015856. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grant A. O., Wendt D. J. Block and modulation of cardiac Na+ channels by antiarrhythmic drugs, neurotransmitters and hormones. Trends Pharmacol Sci. 1992 Sep;13(9):352–358. doi: 10.1016/0165-6147(92)90108-i. [DOI] [PubMed] [Google Scholar]
- Gwilt M., Arrowsmith J. E., Blackburn K. J., Burges R. A., Cross P. E., Dalrymple H. W., Higgins A. J. UK-68,798: a novel, potent and highly selective class III antiarrhythmic agent which blocks potassium channels in cardiac cells. J Pharmacol Exp Ther. 1991 Jan;256(1):318–324. [PubMed] [Google Scholar]
- Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
- Heidbüchel H., Vereecke J., Carmeliet E. Three different potassium channels in human atrium. Contribution to the basal potassium conductance. Circ Res. 1990 May;66(5):1277–1286. doi: 10.1161/01.res.66.5.1277. [DOI] [PubMed] [Google Scholar]
- Hondeghem L. M. Development of class III antiarrhythmic agents. J Cardiovasc Pharmacol. 1992;20 (Suppl 2):S17–S22. [PubMed] [Google Scholar]
- Hondeghem L. M., Katzung B. G. Antiarrhythmic agents: the modulated receptor mechanism of action of sodium and calcium channel-blocking drugs. Annu Rev Pharmacol Toxicol. 1984;24:387–423. doi: 10.1146/annurev.pa.24.040184.002131. [DOI] [PubMed] [Google Scholar]
- Imaizumi Y., Giles W. R. Quinidine-induced inhibition of transient outward current in cardiac muscle. Am J Physiol. 1987 Sep;253(3 Pt 2):H704–H708. doi: 10.1152/ajpheart.1987.253.3.H704. [DOI] [PubMed] [Google Scholar]
- Lu S. T., Lan P. K. [Studies on the alkaloids of Formosan lauraceous plants. 8. Alkaloids of cryptocarya chinensis hemsl. 1. Structures of the new alkaloids "crychine" and "caryachine"]. Yakugaku Zasshi. 1966 Mar;86(3):177–184. doi: 10.1248/yakushi1947.86.3_177. [DOI] [PubMed] [Google Scholar]
- Lynch J. J., Jr, Sanguinetti M. C., Kimura S., Bassett A. L. Therapeutic potential of modulating potassium currents in the diseased myocardium. FASEB J. 1992 Aug;6(11):2952–2960. doi: 10.1096/fasebj.6.11.1386585. [DOI] [PubMed] [Google Scholar]
- Nakayama T., Irisawa H. Transient outward current carried by potassium and sodium in quiescent atrioventricular node cells of rabbits. Circ Res. 1985 Jul;57(1):65–73. doi: 10.1161/01.res.57.1.65. [DOI] [PubMed] [Google Scholar]
- Nattel S. Antiarrhythmic drug classifications. A critical appraisal of their history, present status, and clinical relevance. Drugs. 1991 May;41(5):672–701. doi: 10.2165/00003495-199141050-00002. [DOI] [PubMed] [Google Scholar]
- Nattel S. Comparative mechanisms of action of antiarrhythmic drugs. Am J Cardiol. 1993 Nov 26;72(16):13F–17F. doi: 10.1016/0002-9149(93)90959-g. [DOI] [PubMed] [Google Scholar]
- Noble D. Ionic mechanisms determining the timing of ventricular repolarization: significance for cardiac arrhythmias. Ann N Y Acad Sci. 1992 Jan 27;644:1–22. doi: 10.1111/j.1749-6632.1992.tb30998.x. [DOI] [PubMed] [Google Scholar]
- Näbauer M., Beuckelmann D. J., Erdmann E. Characteristics of transient outward current in human ventricular myocytes from patients with terminal heart failure. Circ Res. 1993 Aug;73(2):386–394. doi: 10.1161/01.res.73.2.386. [DOI] [PubMed] [Google Scholar]
- Rees S. A., Curtis M. J. Specific IK1 blockade: a new antiarrhythmic mechanism? Effect of RP58866 on ventricular arrhythmias in rat, rabbit, and primate. Circulation. 1993 Jun;87(6):1979–1989. doi: 10.1161/01.cir.87.6.1979. [DOI] [PubMed] [Google Scholar]
- Singh B. N., Nademanee K. Control of cardiac arrhythmias by selective lengthening of repolarization: theoretic considerations and clinical observations. Am Heart J. 1985 Feb;109(2):421–430. doi: 10.1016/0002-8703(85)90629-5. [DOI] [PubMed] [Google Scholar]
- Su M. J., Chang G. J., Kuo S. C. Mechanical and electrophysiological studies on the positive inotropic effect of 2-phenyl-4-oxo-hydroquinoline in rat cardiac tissues. Br J Pharmacol. 1993 Sep;110(1):310–316. doi: 10.1111/j.1476-5381.1993.tb13810.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tamargo J., Valenzuela C., Delpón E. New insights into the pharmacology of sodium channel blockers. Eur Heart J. 1992 Nov;13 (Suppl F):2–13. doi: 10.1093/eurheartj/13.suppl_f.2. [DOI] [PubMed] [Google Scholar]
- Wu M. H., Su M. J., Lee S. S., Young M. L. The electrophysiological effects of antiarrhythmic potential of a secoaporphine, N-allylsecoboldine. Br J Pharmacol. 1994 Sep;113(1):221–227. doi: 10.1111/j.1476-5381.1994.tb16197.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu M. H., Su M. J., Lue H. C. Age-related quinidine effects on ionic currents of rabbit cardiac myocytes. J Mol Cell Cardiol. 1994 Sep;26(9):1167–1177. doi: 10.1006/jmcc.1994.1135. [DOI] [PubMed] [Google Scholar]
- Young M. L., Su M. J., Wu M. H., Chen C. C. The electrophysiological effects of dicentrine on the conduction system of rabbit heart. Br J Pharmacol. 1994 Sep;113(1):69–76. doi: 10.1111/j.1476-5381.1994.tb16175.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Young M. L., Tan R. C., Ramza B. M., Joyner R. W. Effects of hypoxia on atrioventricular node of adult and neonatal rabbit hearts. Am J Physiol. 1989 May;256(5 Pt 2):H1337–H1343. doi: 10.1152/ajpheart.1989.256.5.H1337. [DOI] [PubMed] [Google Scholar]
