Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Dec;116(8):3125–3132. doi: 10.1111/j.1476-5381.1995.tb15114.x

Changes in [3H]-UK 14304 binding to alpha 2-adrenoceptors in morphine-dependent guinea-pigs.

K Varani 1, L Beani 1, C Bianchi 1, P A Borea 1, M Simonato 1
PMCID: PMC1909196  PMID: 8719786

Abstract

1. The aim of this study was to investigate the effect of a noradrenergic input in the cortex of morphine-dependent animals. Binding of the alpha 1-adrenoceptor ligand [3H]-prazosin did not change in cortical membranes taken from morphine-dependent as compared to control guinea-pigs. However, binding of the alpha 2-adrenoceptor ligand [3H]-UK 14304 showed decreased KD (-30%) in the absence of significant changes in Bmax, either in cortical membranes or in synaptosomes. 2. Several characteristics of this phenomenon were identified. First, it occurs in a time-dependent fashion, in that it takes 5 days of chronic morphine treatment to start developing. Second, it can be observed after acute administration of high doses of morphine (100 mg kg-1). Third, it does not require a connection with the locus coeruleus or with other subcortical structures, in that it can be reproduced in vitro in isolated cortical slices. Fourth, it requires the integrity of cortical structures, since it cannot be reproduced in vitro in cortical synaptosomes. 3. Release studies were run to attempt identification of a functional correlate of the above observations. No changes were observed in the ability of the alpha 2-adrenoceptor agonist UK 14304 to inhibit 35 mM K(+)-evoked [3H]-noradrenaline outflow from cortical synaptosomes taken from morphine-dependent as compared to control guinea-pigs. However, a large decrease in the IC50 of UK 14304 for the inhibition of 35 mM K(+)-evoked [3H]-gamma-aminobutyric acid ([3H]-GABA) outflow (41 vs. 501 nM) was observed in morphine-dependent as compared to control animals. 4. These data suggest that, in the guinea-pig, chronic morphine treatment is associated with a shift from a low to high affinity agonist state in alpha 2-adrenoceptors on cortical GABA terminals.

Full text

PDF
3125

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aghajanian G. K. Tolerance of locus coeruleus neurones to morphine and suppression of withdrawal response by clonidine. Nature. 1978 Nov 9;276(5684):186–188. doi: 10.1038/276186a0. [DOI] [PubMed] [Google Scholar]
  2. Akaoka H., Aston-Jones G. Opiate withdrawal-induced hyperactivity of locus coeruleus neurons is substantially mediated by augmented excitatory amino acid input. J Neurosci. 1991 Dec;11(12):3830–3839. doi: 10.1523/JNEUROSCI.11-12-03830.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Antonelli T., Beani L., Bianchi C., Rando S., Simonato M., Tanganelli S. Cortical acetylcholine release is increased and gamma-aminobutyric acid outflow is reduced during morphine withdrawal. Br J Pharmacol. 1986 Dec;89(4):853–860. doi: 10.1111/j.1476-5381.1986.tb11191.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Arbilla S., Langer S. Z. Morphine and beta-endorphin inhibit release of noradrenaline from cerebral cortex but not of dopamine from rat striatum. Nature. 1978 Feb 9;271(5645):559–561. doi: 10.1038/271559a0. [DOI] [PubMed] [Google Scholar]
  5. Beani L., Bianchi C., Ferraro L., Morari M., Simonato M., Spalluto G., Tanganelli S. Alpha-2 adrenoreceptor-mediated decrease in gamma-aminobutyric acid outflow in cortical slices and synaptosomes during morphine tolerance. J Pharmacol Exp Ther. 1991 Aug;258(2):472–476. [PubMed] [Google Scholar]
  6. Beani L., Bianchi C., Tanganelli S., Antonelli T., Simonato M., Rando S. Inversion of the alpha-2 and alpha-1 noradrenergic control of the cortical release of acetylcholine and gamma-aminobutyric acid in morphine-tolerant guinea pigs. J Pharmacol Exp Ther. 1988 Oct;247(1):294–301. [PubMed] [Google Scholar]
  7. Bianchi C., Spidalieri G., Guandalini P., Tanganelli S., Beani L. Inhibition of acetylcholine outflow from guinea-pig cerebral cortex following locus coeruleus stimulation. Neurosci Lett. 1979 Sep;14(1):97–100. doi: 10.1016/0304-3940(79)95351-5. [DOI] [PubMed] [Google Scholar]
  8. Bläsig J., Herz A., Reinhold K., Zieglgänsberger S. Development of physical dependence on morphine in respect to time and dosage and quantification of the precipitated withdrawal syndrome in rats. Psychopharmacologia. 1973 Oct 23;33(1):19–38. doi: 10.1007/BF00428791. [DOI] [PubMed] [Google Scholar]
  9. Bylund D. B., Eikenberg D. C., Hieble J. P., Langer S. Z., Lefkowitz R. J., Minneman K. P., Molinoff P. B., Ruffolo R. R., Jr, Trendelenburg U. International Union of Pharmacology nomenclature of adrenoceptors. Pharmacol Rev. 1994 Jun;46(2):121–136. [PubMed] [Google Scholar]
  10. Carlson K. R., Cooper D. O. Morphine dependence and protracted abstinence: regional alterations in CNS radioligand binding. Pharmacol Biochem Behav. 1985 Dec;23(6):1059–1063. doi: 10.1016/0091-3057(85)90114-5. [DOI] [PubMed] [Google Scholar]
  11. Ferraro L., Tanganelli S., Caló G., Antonelli T., Fabrizi A., Acciarri N., Bianchi C., Beani L., Simonato M. Noradrenergic modulation of gamma-aminobutyric acid outflow from the human cerebral cortex. Brain Res. 1993 Nov 26;629(1):103–108. doi: 10.1016/0006-8993(93)90487-8. [DOI] [PubMed] [Google Scholar]
  12. Foote S. L., Bloom F. E., Aston-Jones G. Nucleus locus ceruleus: new evidence of anatomical and physiological specificity. Physiol Rev. 1983 Jul;63(3):844–914. doi: 10.1152/physrev.1983.63.3.844. [DOI] [PubMed] [Google Scholar]
  13. Froldi G., Guerra L., Pandolfo L., Chinellato A., Ragazzi E., Caparrotta L., Borea P. A., Fassina G. Phentolamine and hypoxia: modulation of contractility and alpha 1-adrenoceptors in isolated rat atria. Naunyn Schmiedebergs Arch Pharmacol. 1994 Nov;350(5):563–568. doi: 10.1007/BF00173027. [DOI] [PubMed] [Google Scholar]
  14. Garcia-Sevilla J. A., Ugedo L., Ulibarri I., Gutierrez M. Heroin increases the density and sensitivity of platelet alpha 2-adrenoceptors in human addicts. Psychopharmacology (Berl) 1986;88(4):489–492. doi: 10.1007/BF00178512. [DOI] [PubMed] [Google Scholar]
  15. Gelbmann C. M., Müller W. E. Specific decrease of high-affinity agonist states of alpha 2-adrenoceptors in the aging mouse brain. J Neural Transm Gen Sect. 1990;79(1-2):131–136. doi: 10.1007/BF01251008. [DOI] [PubMed] [Google Scholar]
  16. Gillan M. G., Kosterlitz H. W., Robson L. E., Waterfield A. A. The inhibitory effects of presynaptic alpha-adrenoceptor agonists on contractions of guinea-pig ileum and mouse vas deferens in the morphine-dependent and withdrawn states produced in vitro. Br J Pharmacol. 1979 Aug;66(4):601–608. doi: 10.1111/j.1476-5381.1979.tb13700.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Goldstein A., Schulz R. Morphine-tolerant longitudinal muscle strip from guinea-pig ileum. Br J Pharmacol. 1973 Aug;48(4):655–666. doi: 10.1111/j.1476-5381.1973.tb08254.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Göthert M., Wehking E. Inhibition of Ca2+-induced noradrenaline release from central noradrenergic neurons by morphine. Experientia. 1980 Feb 15;36(2):239–241. doi: 10.1007/BF01953755. [DOI] [PubMed] [Google Scholar]
  19. Hamburg M., Tallman J. F. Chronic morphine administration increases the apparent number of alpha 2-adrenergic receptors in rat brain. Nature. 1981 Jun 11;291(5815):493–495. doi: 10.1038/291493a0. [DOI] [PubMed] [Google Scholar]
  20. Harsing L. G., Jr, Vizi E. S. Evidence that two stereochemically different alpha-2 adrenoceptors modulate norepinephrine release in rat cerebral cortex. J Pharmacol Exp Ther. 1991 Jan;256(1):44–49. [PubMed] [Google Scholar]
  21. Koob G. F., Bloom F. E. Cellular and molecular mechanisms of drug dependence. Science. 1988 Nov 4;242(4879):715–723. doi: 10.1126/science.2903550. [DOI] [PubMed] [Google Scholar]
  22. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  23. Loftus D. J., Stolk J. M., U'Prichard D. C. Binding of the imidazoline UK-14, 304, a putative full alpha 2-adrenoceptor agonist, to rat cerebral cortex membranes. Life Sci. 1984 Jul 2;35(1):61–69. doi: 10.1016/0024-3205(84)90152-8. [DOI] [PubMed] [Google Scholar]
  24. Loh H. H., Tao P. L., Smith A. P. Role of receptor regulation in opioid tolerance mechanisms. Synapse. 1988;2(4):457–462. doi: 10.1002/syn.890020414. [DOI] [PubMed] [Google Scholar]
  25. Luthin D. R., Olsson R. A., Thompson R. D., Sawmiller D. R., Linden J. Characterization of two affinity states of adenosine A2a receptors with a new radioligand, 2-[2-(4-amino-3-[125I]iodophenyl)ethylamino]adenosine. Mol Pharmacol. 1995 Feb;47(2):307–313. [PubMed] [Google Scholar]
  26. Maldonado R., Stinus L., Gold L. H., Koob G. F. Role of different brain structures in the expression of the physical morphine withdrawal syndrome. J Pharmacol Exp Ther. 1992 May;261(2):669–677. [PubMed] [Google Scholar]
  27. Maura G., Bonanno G., Raiteri M. Presynaptic alpha 2-adrenoceptors mediating inhibition of noradrenaline and 5-hydroxytryptamine release in rat cerebral cortex: further characterization as different alpha 2-adrenoceptor subtypes. Naunyn Schmiedebergs Arch Pharmacol. 1992 Apr;345(4):410–416. doi: 10.1007/BF00176618. [DOI] [PubMed] [Google Scholar]
  28. Meana J. J., Barturen F., García-Sevilla J. A. Characterization and regional distribution of alpha 2-adrenoceptors in postmortem human brain using the full agonist [3H]UK 14304. J Neurochem. 1989 Apr;52(4):1210–1217. doi: 10.1111/j.1471-4159.1989.tb01868.x. [DOI] [PubMed] [Google Scholar]
  29. Montel H., Starke K., Weber F. Influence of morphine and naloxone on the release of noradrenaline from rat brain cortex slices. Naunyn Schmiedebergs Arch Pharmacol. 1974;283(4):357–369. doi: 10.1007/BF00501109. [DOI] [PubMed] [Google Scholar]
  30. Moroni F., Bianchi C., Moneti G., Tanganelli S., Spidalieri G., Guandalini P., Beani L. Release of GABA from the guinea-pig neocortex induced by electrical stimulation of the 'locus coeruleus' or by norepinephrine. Brain Res. 1982 Jan 28;232(1):216–221. doi: 10.1016/0006-8993(82)90629-1. [DOI] [PubMed] [Google Scholar]
  31. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  32. Nestler E. J., Hope B. T., Widnell K. L. Drug addiction: a model for the molecular basis of neural plasticity. Neuron. 1993 Dec;11(6):995–1006. doi: 10.1016/0896-6273(93)90213-b. [DOI] [PubMed] [Google Scholar]
  33. Nestler E. J. Molecular mechanisms of drug addiction. J Neurosci. 1992 Jul;12(7):2439–2450. doi: 10.1523/JNEUROSCI.12-07-02439.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. North R. A., Williams J. T., Surprenant A., Christie M. J. Mu and delta receptors belong to a family of receptors that are coupled to potassium channels. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5487–5491. doi: 10.1073/pnas.84.15.5487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Ordway G. A., Jaconetta S. M., Halaris A. E. Characterization of subtypes of alpha-2 adrenoceptors in the human brain. J Pharmacol Exp Ther. 1993 Feb;264(2):967–976. [PubMed] [Google Scholar]
  36. Raiteri M., Angelini F., Levi G. A simple apparatus for studying the release of neurotransmitters from synaptosomes. Eur J Pharmacol. 1974 Mar;25(3):411–414. doi: 10.1016/0014-2999(74)90272-6. [DOI] [PubMed] [Google Scholar]
  37. Raiteri M., Bonanno G., Maura G., Pende M., Andrioli G. C., Ruelle A. Subclassification of release-regulating alpha 2-autoreceptors in human brain cortex. Br J Pharmacol. 1992 Dec;107(4):1146–1151. doi: 10.1111/j.1476-5381.1992.tb13421.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rasmussen K., Aghajanian G. K. Withdrawal-induced activation of locus coeruleus neurons in opiate-dependent rats: attenuation by lesions of the nucleus paragigantocellularis. Brain Res. 1989 Dec 29;505(2):346–350. doi: 10.1016/0006-8993(89)91466-2. [DOI] [PubMed] [Google Scholar]
  39. Rasmussen K., Beitner-Johnson D. B., Krystal J. H., Aghajanian G. K., Nestler E. J. Opiate withdrawal and the rat locus coeruleus: behavioral, electrophysiological, and biochemical correlates. J Neurosci. 1990 Jul;10(7):2308–2317. doi: 10.1523/JNEUROSCI.10-07-02308.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Redmond D. E., Jr, Krystal J. H. Multiple mechanisms of withdrawal from opioid drugs. Annu Rev Neurosci. 1984;7:443–478. doi: 10.1146/annurev.ne.07.030184.002303. [DOI] [PubMed] [Google Scholar]
  41. Simonato M., Bregola G., Muzzolini A., Bianchi C., Beani L. Characterization of K(+)-evoked [3H]D-aspartate outflow in the rat hippocampus in vitro. Neurochem Int. 1993 Dec;23(6):555–560. doi: 10.1016/0197-0186(93)90103-c. [DOI] [PubMed] [Google Scholar]
  42. Smith C. B., Moises H. C., Spengler R. N., Hollingsworth P. J. Changes in alpha 2-adrenoceptor number and function in brains of morphine-dependent rats. Eur J Pharmacol. 1989 Feb 28;161(2-3):111–119. doi: 10.1016/0014-2999(89)90833-9. [DOI] [PubMed] [Google Scholar]
  43. Stahl S. M. The human platelet. A diagnostic and research tool for the study of biogenic amines in psychiatric and neurologic disorders. Arch Gen Psychiatry. 1977 May;34(5):509–516. doi: 10.1001/archpsyc.1977.01770170019001. [DOI] [PubMed] [Google Scholar]
  44. Swillens S., Waelbroeck M., Champeil P. Does a radiolabelled ligand bind to a homogeneous population of non-interacting receptor sites? Trends Pharmacol Sci. 1995 May;16(5):151–155. doi: 10.1016/s0165-6147(00)89007-0. [DOI] [PubMed] [Google Scholar]
  45. Tanganelli S., Antonelli T., Simonato M., Spalluto G., Tomasini C., Bianchi C., Beani L. Alpha 1-adrenoreceptor-mediated increase in acetylcholine release in brain slices during morphine tolerance. J Neurochem. 1989 Oct;53(4):1072–1076. doi: 10.1111/j.1471-4159.1989.tb07397.x. [DOI] [PubMed] [Google Scholar]
  46. Tomasini C., Guidorzi R., Bianchi C., Beani L. Clonidine inhibition of norepinephrine release from normal and morphine-tolerant guinea pig cortical slices. J Neurochem. 1992 Apr;58(4):1440–1446. doi: 10.1111/j.1471-4159.1992.tb11361.x. [DOI] [PubMed] [Google Scholar]
  47. U'Prichard D. C., Bechtel W. D., Rouot B. M., Snyder S. H. Multiple apparent alpha-noradrenergic receptor binding sites in rat brain: effect of 6-hydroxydopamine. Mol Pharmacol. 1979 Jul;16(1):47–60. [PubMed] [Google Scholar]
  48. Vicentini L. M., Miller R. J., Robertson M. J. Chronic opiate treatment does not modify alpha 2-adrenergic receptors in rat cerebral cortex, kidney and in the neurotumor cell line NCB20. Eur J Pharmacol. 1983 Nov 25;95(3-4):265–270. doi: 10.1016/0014-2999(83)90644-1. [DOI] [PubMed] [Google Scholar]
  49. Werling L. L., McMahon P. N., Cox B. M. Selective tolerance at mu and kappa opioid receptors modulating norepinephrine release in guinea pig cortex. J Pharmacol Exp Ther. 1988 Dec;247(3):1103–1106. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES