Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Dec;116(7):3021–3027. doi: 10.1111/j.1476-5381.1995.tb15958.x

Stereoselective uptake of beta-lactam antibiotics by the intestinal peptide transporter.

U Wenzel 1, D T Thwaites 1, H Daniel 1
PMCID: PMC1909205  PMID: 8680738

Abstract

1. The stereoselective transport of beta-lactam antibiotics has been investigated in the human intestinal epithelial cell line, Caco-2, by use of D- and L-enantiomers of cephalexin and loracarbef as substrates. 2. The L-isomers of cephalexin, loracarbef and dipeptides displayed a higher affinity for the oligopeptide/H(+)-symporter in Caco-2 cells than the D-isomers. This was demonstrated by inhibition of the influx of the beta-lactam, [3H]-cefadroxil. 3. By measurement of the substrate-induced intracellular acidification in Caco-2 cells loaded with the pH-sensitive fluorescent dye BCECF (2',7'-bis(2-carboxyethyl)-5-(6)-carboxy-fluorescein), it was demonstrated for the first time that L-isomers of beta-lactams not only bind to the peptide transporter with high affinity but are indeed transported. 4. Efficient proton-coupled transport of L-beta-lactam antibiotics was also shown to occur in Xenopus laevis oocytes expressing the cloned peptide transporter PepT1 from rabbit small intestine. 5. Both cell systems therefore express a stereoselective transport pathway for beta-lactam antibiotics with very similar characteristics and may prove useful for screening rapidly the oral availability of peptide-derived drugs.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Artursson P. Epithelial transport of drugs in cell culture. I: A model for studying the passive diffusion of drugs over intestinal absorptive (Caco-2) cells. J Pharm Sci. 1990 Jun;79(6):476–482. doi: 10.1002/jps.2600790604. [DOI] [PubMed] [Google Scholar]
  2. Asatoor A. M., Chadha A., Milne M. D., Prosser D. I. Intestinal absorption of stereoisomers of dipeptides in the rat. Clin Sci Mol Med. 1973 Aug;45(2):199–212. doi: 10.1042/cs0450199. [DOI] [PubMed] [Google Scholar]
  3. Bergan T. Pharmacokinetics of beta-lactam antibiotics. Scand J Infect Dis Suppl. 1984;42:83–98. [PubMed] [Google Scholar]
  4. Boll M., Markovich D., Weber W. M., Korte H., Daniel H., Murer H. Expression cloning of a cDNA from rabbit small intestine related to proton-coupled transport of peptides, beta-lactam antibiotics and ACE-inhibitors. Pflugers Arch. 1994 Nov;429(1):146–149. doi: 10.1007/BF02584043. [DOI] [PubMed] [Google Scholar]
  5. Brandsch M., Miyamoto Y., Ganapathy V., Leibach F. H. Expression and protein kinase C-dependent regulation of peptide/H+ co-transport system in the Caco-2 human colon carcinoma cell line. Biochem J. 1994 Apr 1;299(Pt 1):253–260. doi: 10.1042/bj2990253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dantzig A. H., Bergin L. Uptake of the cephalosporin, cephalexin, by a dipeptide transport carrier in the human intestinal cell line, Caco-2. Biochim Biophys Acta. 1990 Sep 7;1027(3):211–217. doi: 10.1016/0005-2736(90)90309-c. [DOI] [PubMed] [Google Scholar]
  7. Dantzig A. H., Duckworth D. C., Tabas L. B. Transport mechanisms responsible for the absorption of loracarbef, cefixime, and cefuroxime axetil into human intestinal Caco-2 cells. Biochim Biophys Acta. 1994 Apr 20;1191(1):7–13. doi: 10.1016/0005-2736(94)90226-7. [DOI] [PubMed] [Google Scholar]
  8. Dantzig A. H., Hoskins J. A., Tabas L. B., Bright S., Shepard R. L., Jenkins I. L., Duckworth D. C., Sportsman J. R., Mackensen D., Rosteck P. R., Jr Association of intestinal peptide transport with a protein related to the cadherin superfamily. Science. 1994 Apr 15;264(5157):430–433. doi: 10.1126/science.8153632. [DOI] [PubMed] [Google Scholar]
  9. Dantzig A. H., Tabas L. B., Bergin L. Cefaclor uptake by the proton-dependent dipeptide transport carrier of human intestinal Caco-2 cells and comparison to cephalexin uptake. Biochim Biophys Acta. 1992 Dec 9;1112(2):167–173. doi: 10.1016/0005-2736(92)90388-3. [DOI] [PubMed] [Google Scholar]
  10. Donowitz G. R., Mandell G. L. Beta-Lactam antibiotics (1). N Engl J Med. 1988 Feb 18;318(7):419–426. doi: 10.1056/NEJM198802183180706. [DOI] [PubMed] [Google Scholar]
  11. Fei Y. J., Kanai Y., Nussberger S., Ganapathy V., Leibach F. H., Romero M. F., Singh S. K., Boron W. F., Hediger M. A. Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature. 1994 Apr 7;368(6471):563–566. doi: 10.1038/368563a0. [DOI] [PubMed] [Google Scholar]
  12. Ganapathy V., Burckhardt G., Leibach F. H. Characteristics of glycylsarcosine transport in rabbit intestinal brush-border membrane vesicles. J Biol Chem. 1984 Jul 25;259(14):8954–8959. [PubMed] [Google Scholar]
  13. Inui K., Okano T., Maegawa H., Kato M., Takano M., Hori R. H+ coupled transport of p.o. cephalosporins via dipeptide carriers in rabbit intestinal brush-border membranes: difference of transport characteristics between cefixime and cephradine. J Pharmacol Exp Ther. 1988 Oct;247(1):235–241. [PubMed] [Google Scholar]
  14. Inui K., Yamamoto M., Saito H. Transepithelial transport of oral cephalosporins by monolayers of intestinal epithelial cell line Caco-2: specific transport systems in apical and basolateral membranes. J Pharmacol Exp Ther. 1992 Apr;261(1):195–201. [PubMed] [Google Scholar]
  15. Iseki K., Iemura A., Sato H., Sunada K., Miyazaki K., Arita T. Intestinal absorption of several beta-lactam antibiotics. V. Effect of amino beta-lactam analogues and dipeptides on the absorption of amino beta-lactam antibiotics. J Pharmacobiodyn. 1984 Oct;7(10):768–775. doi: 10.1248/bpb1978.7.768. [DOI] [PubMed] [Google Scholar]
  16. Kramer W., Girbig F., Gutjahr U., Kowalewski S., Adam F., Schiebler W. Intestinal absorption of beta-lactam antibiotics and oligopeptides. Functional and stereospecific reconstitution of the oligopeptide transport system from rabbit small intestine. Eur J Biochem. 1992 Mar 1;204(2):923–930. doi: 10.1111/j.1432-1033.1992.tb16713.x. [DOI] [PubMed] [Google Scholar]
  17. Kudo Y., Urabe T., Fujiwara A., Yamada K., Kawasaki T. Carrier-mediated transport system for cephalexin in human placental brush-border membrane vesicles. Biochim Biophys Acta. 1989 Jan 30;978(2):313–318. doi: 10.1016/0005-2736(89)90130-2. [DOI] [PubMed] [Google Scholar]
  18. Mathews D. M., Adibi S. A. Peptide absorption. Gastroenterology. 1976 Jul;71(1):151–161. [PubMed] [Google Scholar]
  19. Matsumoto S., Saito H., Inui K. Transcellular transport of oral cephalosporins in human intestinal epithelial cells, Caco-2: interaction with dipeptide transport systems in apical and basolateral membranes. J Pharmacol Exp Ther. 1994 Aug;270(2):498–504. [PubMed] [Google Scholar]
  20. Matthews D. M. Mechanisms of peptide transport. Beitr Infusionther Klin Ernahr. 1987;17:6–53. [PubMed] [Google Scholar]
  21. Neu H. C. Relation of structural properties of beta-lactam antibiotics to antibacterial activity. Am J Med. 1985 Aug 9;79(2A):2–13. doi: 10.1016/0002-9343(85)90254-2. [DOI] [PubMed] [Google Scholar]
  22. Okano T., Inui K., Maegawa H., Takano M., Hori R. H+ coupled uphill transport of aminocephalosporins via the dipeptide transport system in rabbit intestinal brush-border membranes. J Biol Chem. 1986 Oct 25;261(30):14130–14134. [PubMed] [Google Scholar]
  23. Rajendran V. M., Berteloot A., Ramaswamy K. Transport of glycyl-L-proline by mouse intestinal brush-border membrane vesicles. Am J Physiol. 1985 Jun;248(6 Pt 1):G682–G686. doi: 10.1152/ajpgi.1985.248.6.G682. [DOI] [PubMed] [Google Scholar]
  24. Riley S. A., Warhurst G., Crowe P. T., Turnberg L. A. Active hexose transport across cultured human Caco-2 cells: characterisation and influence of culture conditions. Biochim Biophys Acta. 1991 Jul 22;1066(2):175–182. doi: 10.1016/0005-2736(91)90184-a. [DOI] [PubMed] [Google Scholar]
  25. Saito H., Inui K. Dipeptide transporters in apical and basolateral membranes of the human intestinal cell line Caco-2. Am J Physiol. 1993 Aug;265(2 Pt 1):G289–G294. doi: 10.1152/ajpgi.1993.265.2.G289. [DOI] [PubMed] [Google Scholar]
  26. Sinko P. J., Amidon G. L. Characterization of the oral absorption of beta-lactam antibiotics. I. Cephalosporins: determination of intrinsic membrane absorption parameters in the rat intestine in situ. Pharm Res. 1988 Oct;5(10):645–650. doi: 10.1023/a:1015974920682. [DOI] [PubMed] [Google Scholar]
  27. Sinko P. J., Amidon G. L. Characterization of the oral absorption of beta-lactam antibiotics. II. Competitive absorption and peptide carrier specificity. J Pharm Sci. 1989 Sep;78(9):723–727. doi: 10.1002/jps.2600780904. [DOI] [PubMed] [Google Scholar]
  28. Takano M., Tomita Y., Katsura T., Yasuhara M., Inui K., Hori R. Bestatin transport in rabbit intestinal brush-border membrane vesicles. Biochem Pharmacol. 1994 Mar 15;47(6):1089–1090. doi: 10.1016/0006-2952(94)90421-9. [DOI] [PubMed] [Google Scholar]
  29. Tamai I., Ling H. Y., Timbul S. M., Nishikido J., Tsuji A. Stereospecific absorption and degradation of cephalexin. J Pharm Pharmacol. 1988 May;40(5):320–324. doi: 10.1111/j.2042-7158.1988.tb05259.x. [DOI] [PubMed] [Google Scholar]
  30. Thomas J. A., Buchsbaum R. N., Zimniak A., Racker E. Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry. 1979 May 29;18(11):2210–2218. doi: 10.1021/bi00578a012. [DOI] [PubMed] [Google Scholar]
  31. Thwaites D. T., Brown C. D., Hirst B. H., Simmons N. L. Transepithelial glycylsarcosine transport in intestinal Caco-2 cells mediated by expression of H(+)-coupled carriers at both apical and basal membranes. J Biol Chem. 1993 Apr 15;268(11):7640–7642. [PubMed] [Google Scholar]
  32. Thwaites D. T., Cavet M., Hirst B. H., Simmons N. L. Angiotensin-converting enzyme (ACE) inhibitor transport in human intestinal epithelial (Caco-2) cells. Br J Pharmacol. 1995 Mar;114(5):981–986. doi: 10.1111/j.1476-5381.1995.tb13301.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Thwaites D. T., Hirst B. H., Simmons N. L. Direct assessment of dipeptide/H+ symport in intact human intestinal (Caco-2) epithelium: a novel method utilising continuous intracellular pH measurement. Biochem Biophys Res Commun. 1993 Jul 15;194(1):432–438. doi: 10.1006/bbrc.1993.1838. [DOI] [PubMed] [Google Scholar]
  34. Thwaites D. T., Hirst B. H., Simmons N. L. Substrate specificity of the di/tripeptide transporter in human intestinal epithelia (Caco-2): identification of substrates that undergo H(+)-coupled absorption. Br J Pharmacol. 1994 Nov;113(3):1050–1056. doi: 10.1111/j.1476-5381.1994.tb17099.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tsuji A., Tamai I., Hirooka H., Terasaki T. Beta-lactam antibiotics and transport via the dipeptide carrier system across the intestinal brush-border membrane. Biochem Pharmacol. 1987 Feb 15;36(4):565–567. doi: 10.1016/0006-2952(87)90369-8. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES