Abstract
1. After a period of myocardial ischaemia, reperfusion of the myocardium can elicit cardiac arrhythmias. Susceptibility to these arrhythmias declines with time, such that a preceding period of more than approximately 40 min ischaemia is associated with few reperfusion-induced arrhythmias. We have tested the hypothesis that this decline in susceptibility occurs, in part, because of protection by endogenous guanosine 3':5'-cyclic monophosphate (cyclic GMP). 2. Rat isolated hearts were subjected to 60 min left regional ischaemia followed by reperfusion (n = 10 per group). Methylene blue (20 microM), a soluble guanylate cyclase inhibitor, raised the incidence of reperfusion-induced ventricular fibrillation (VF) from 10% in control hearts to 80% (P < 0.05). This effect of methylene blue was abolished by co-perfusion with zaprinast (100 microM), a phosphodiesterase inhibitor which, in the rat heart, is cyclic GMP-specific (specific for the type-V phosphodiesterase isozyme). 3. Methylene blue reduced cyclic GMP levels in the ischaemic, non-ischaemic and reperfused myocardium (P < 0.05) to 50 +/- 10, 52 +/- 12 and 70 +/- 7 fmol mg-1 tissue wet weight, respectively from control values of 143 +/- 38, 147 +/- 43 and 156 +/- 15 fmol mg-1. Co-perfusion with zaprinast prevented this effect, and cyclic GMP levels were actually elevated (P < 0.05) to 366 +/- 102, 396 +/- 130 and 293 +/- 22 fmol mg-1 in ischaemic, non-ischaemic and reperfused myocardium, respectively. Zaprinast by itself also elevated cyclic GMP content. Cyclic AMP levels were not affected by zaprinast or methylene blue. 4. In conclusion, when endogenous cardiac cyclic GMP synthesis is reduced, susceptibility to reperfusion-induced VF after sustained ischaemia is substantially increased. The effect is prevented by inhibiting cyclic GMP degradation. Therefore cyclic GMP appears to be an endogenous intracellular cardioprotectant, and its actions may account for the low susceptibility to VF normally encountered in hearts reperfused after sustained ischaemia.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akhtar M., Breithardt G., Camm A. J., Coumel P., Janse M. J., Lazzara R., Myerburg R. J., Schwartz P. J., Waldo A. L., Wellens H. J. CAST and beyond. Implications of the Cardiac Arrhythmia Suppression Trial. Task Force of the Working Group on Arrhythmias of the European Society of Cardiology. Circulation. 1990 Mar;81(3):1123–1127. doi: 10.1161/01.cir.81.3.1123. [DOI] [PubMed] [Google Scholar]
- Barnes C. S., Coker S. J. Failure of nitric oxide donors to alter arrhythmias induced by acute myocardial ischaemia or reperfusion in anaesthetized rats. Br J Pharmacol. 1995 Jan;114(2):349–356. doi: 10.1111/j.1476-5381.1995.tb13233.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bernier M., Curtis M. J., Hearse D. J. Ischemia-induced and reperfusion-induced arrhythmias: importance of heart rate. Am J Physiol. 1989 Jan;256(1 Pt 2):H21–H31. doi: 10.1152/ajpheart.1989.256.1.H21. [DOI] [PubMed] [Google Scholar]
- Billman G. E. Effect of carbachol and cyclic GMP on susceptibility to ventricular fibrillation. FASEB J. 1990 Apr 1;4(6):1668–1673. doi: 10.1096/fasebj.4.6.2156744. [DOI] [PubMed] [Google Scholar]
- Bode D. C., Kanter J. R., Brunton L. L. Cellular distribution of phosphodiesterase isoforms in rat cardiac tissue. Circ Res. 1991 Apr;68(4):1070–1079. doi: 10.1161/01.res.68.4.1070. [DOI] [PubMed] [Google Scholar]
- Boileau M. A., Russell K. J. Invasive bladder cancer. Strategies for cure and bladder preservation. Hematol Oncol Clin North Am. 1988 Sep;2(3):447–455. [PubMed] [Google Scholar]
- Busuttil R. W., Graeff R. M., George W. J. Possible role of cyclic nucleotides in the mechanism of the protective effect of methylprednisolone on the hypoxic rat heart. J Cyclic Nucleotide Res. 1978 Jun;4(3):209–218. [PubMed] [Google Scholar]
- Cano J. P., Guillen J. C., Jouve R., Langlet F., Puddu P. E., Rolland P. H., Serradimigni A. Molsidomine prevents post-ischaemic ventricular fibrillation in dogs. Br J Pharmacol. 1986 Aug;88(4):779–789. doi: 10.1111/j.1476-5381.1986.tb16250.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Curtis M. J., Garlick P. B., Ridley P. D. Anion manipulation, a novel antiarrhythmic approach: mechanism of action. J Mol Cell Cardiol. 1993 Apr;25(4):417–436. doi: 10.1006/jmcc.1993.1048. [DOI] [PubMed] [Google Scholar]
- Curtis M. J., Hearse D. J. Ischaemia-induced and reperfusion-induced arrhythmias differ in their sensitivity to potassium: implications for mechanisms of initiation and maintenance of ventricular fibrillation. J Mol Cell Cardiol. 1989 Jan;21(1):21–40. doi: 10.1016/0022-2828(89)91490-9. [DOI] [PubMed] [Google Scholar]
- Curtis M. J., Hearse D. J. Reperfusion-induced arrhythmias are critically dependent upon occluded zone size: relevance to the mechanism of arrhythmogenesis. J Mol Cell Cardiol. 1989 Jun;21(6):625–637. doi: 10.1016/0022-2828(89)90828-6. [DOI] [PubMed] [Google Scholar]
- Curtis M. J., Pugsley M. K., Walker M. J. Endogenous chemical mediators of ventricular arrhythmias in ischaemic heart disease. Cardiovasc Res. 1993 May;27(5):703–719. doi: 10.1093/cvr/27.5.703. [DOI] [PubMed] [Google Scholar]
- Garthwaite J., Charles S. L., Chess-Williams R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature. 1988 Nov 24;336(6197):385–388. doi: 10.1038/336385a0. [DOI] [PubMed] [Google Scholar]
- Hearse D. J. Ischemia, reperfusion, and the determinants of tissue injury. Cardiovasc Drugs Ther. 1990 Aug;4 (Suppl 4):767–776. doi: 10.1007/BF00051274. [DOI] [PubMed] [Google Scholar]
- Hearse D. J., Tosaki A. Free radicals and calcium: simultaneous interacting triggers as determinants of vulnerability to reperfusion-induced arrhythmias in the rat heart. J Mol Cell Cardiol. 1988 Mar;20(3):213–223. doi: 10.1016/s0022-2828(88)80054-3. [DOI] [PubMed] [Google Scholar]
- Holbrook M., Coker S. J. Effects of zaprinast and rolipram on platelet aggregation and arrhythmias following myocardial ischaemia and reperfusion in anaesthetized rabbits. Br J Pharmacol. 1991 Aug;103(4):1973–1979. doi: 10.1111/j.1476-5381.1991.tb12362.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kane K. A., Morcillo-Sanchez E. J., Parratt J. R., Rodger I. W., Shahid M. The relationship between coronary artery occlusion-induced arrhythmias and myocardial cyclic nucleotide levels in the anaesthetized rat. Br J Pharmacol. 1985 Jan;84(1):139–145. [PMC free article] [PubMed] [Google Scholar]
- Kohlhardt M., Haap K. 8-bromo-guanosine-3',5' -monophosphate mimics the effect of acetylcholine on slow response action potential and contractile force in mammalian atrial myocardium. J Mol Cell Cardiol. 1978 Jun;10(6):573–586. doi: 10.1016/0022-2828(78)90015-9. [DOI] [PubMed] [Google Scholar]
- Manning A. S., Hearse D. J. Reperfusion-induced arrhythmias: mechanisms and prevention. J Mol Cell Cardiol. 1984 Jun;16(6):497–518. doi: 10.1016/s0022-2828(84)80638-0. [DOI] [PubMed] [Google Scholar]
- Marshall J. J., Wei E. P., Kontos H. A. Independent blockade of cerebral vasodilation from acetylcholine and nitric oxide. Am J Physiol. 1988 Oct;255(4 Pt 2):H847–H854. doi: 10.1152/ajpheart.1988.255.4.H847. [DOI] [PubMed] [Google Scholar]
- Martorana P. A., Mogilev A. M., Kettenbach B., Nitz R. E. Effect of molsidomine on spontaneous ventricular fibrillation following myocardial ischemia and reperfusion in the dog. Adv Myocardiol. 1983;4:605–613. doi: 10.1007/978-1-4757-4441-5_59. [DOI] [PubMed] [Google Scholar]
- Maxwell M. P., Hearse D. J., Yellon D. M. Species variation in the coronary collateral circulation during regional myocardial ischaemia: a critical determinant of the rate of evolution and extent of myocardial infarction. Cardiovasc Res. 1987 Oct;21(10):737–746. doi: 10.1093/cvr/21.10.737. [DOI] [PubMed] [Google Scholar]
- Mayer B., Brunner F., Schmidt K. Novel actions of methylene blue. Eur Heart J. 1993 Nov;14 (Suppl 1):22–26. [PubMed] [Google Scholar]
- McCord J. M., Fridovich I. The utility of superoxide dismutase in studying free radical reactions. II. The mechanism of the mediation of cytochrome c reduction by a variety of electron carriers. J Biol Chem. 1970 Mar 25;245(6):1374–1377. [PubMed] [Google Scholar]
- Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
- Murad F. Cyclic guanosine monophosphate as a mediator of vasodilation. J Clin Invest. 1986 Jul;78(1):1–5. doi: 10.1172/JCI112536. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nesher R., Robinson W. F., Gibb L., Bishop S. P., Kruger F. A. Cyclic nucleotide levels in the perfused rat heart subjected to hypoxia. Experientia. 1977 Feb 15;33(2):215–217. doi: 10.1007/BF02124074. [DOI] [PubMed] [Google Scholar]
- Parratt J. Endogenous myocardial protective (antiarrhythmic) substances. Cardiovasc Res. 1993 May;27(5):693–702. doi: 10.1093/cvr/27.5.693. [DOI] [PubMed] [Google Scholar]
- Podzuweit T., Lubbe W. F., Opie L. H. Cyclic adenosine monophosphate, ventricular fibrillation, and antiarrhythmic drugs. Lancet. 1976 Feb 14;1(7955):341–342. doi: 10.1016/s0140-6736(76)90090-8. [DOI] [PubMed] [Google Scholar]
- Rees S. A., Curtis M. J. Specific IK1 blockade: a new antiarrhythmic mechanism? Effect of RP58866 on ventricular arrhythmias in rat, rabbit, and primate. Circulation. 1993 Jun;87(6):1979–1989. doi: 10.1161/01.cir.87.6.1979. [DOI] [PubMed] [Google Scholar]
- Ridley P. D., Curtis M. J. Anion manipulation: a new antiarrhythmic approach. Action of substitution of chloride with nitrate on ischemia- and reperfusion-induced ventricular fibrillation and contractile function. Circ Res. 1992 Apr;70(4):617–632. doi: 10.1161/01.res.70.4.617. [DOI] [PubMed] [Google Scholar]
- Tohse N., Sperelakis N. cGMP inhibits the activity of single calcium channels in embryonic chick heart cells. Circ Res. 1991 Aug;69(2):325–331. doi: 10.1161/01.res.69.2.325. [DOI] [PubMed] [Google Scholar]
- Trautwein W., Taniguchi J., Noma A. The effect of intracellular cyclic nucleotides and calcium on the action potential and acetylcholine response of isolated cardiac cells. Pflugers Arch. 1982 Feb;392(4):307–314. doi: 10.1007/BF00581624. [DOI] [PubMed] [Google Scholar]
- Tsuchihashi K., Curtis M. J. Influence of tedisamil on the initiation and maintenance of ventricular fibrillation: chemical defibrillation by Ito blockade? J Cardiovasc Pharmacol. 1991 Sep;18(3):445–456. doi: 10.1097/00005344-199109000-00018. [DOI] [PubMed] [Google Scholar]
- Tzivoni D., Keren A., Granot H., Gottlieb S., Benhorin J., Stern S. Ventricular fibrillation caused by myocardial reperfusion in Prinzmetal's angina. Am Heart J. 1983 Feb;105(2):323–325. doi: 10.1016/0002-8703(83)90534-3. [DOI] [PubMed] [Google Scholar]
- Vegh A., Papp J. G., Szekeres L., Parratt J. The local intracoronary administration of methylene blue prevents the pronounced antiarrhythmic effect of ischaemic preconditioning. Br J Pharmacol. 1992 Dec;107(4):910–911. doi: 10.1111/j.1476-5381.1992.tb13384.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolin M. S., Cherry P. D., Rodenburg J. M., Messina E. J., Kaley G. Methylene blue inhibits vasodilation of skeletal muscle arterioles to acetylcholine and nitric oxide via the extracellular generation of superoxide anion. J Pharmacol Exp Ther. 1990 Sep;254(3):872–876. [PubMed] [Google Scholar]
- Woodward B., Zakaria M. N. Effect of some free radical scavengers on reperfusion induced arrhythmias in the isolated rat heart. J Mol Cell Cardiol. 1985 May;17(5):485–493. doi: 10.1016/s0022-2828(85)80053-5. [DOI] [PubMed] [Google Scholar]
- Yamada M., Hearse D. J., Curtis M. J. Reperfusion and readmission of oxygen. Pathophysiological relevance of oxygen-derived free radicals to arrhythmogenesis. Circ Res. 1990 Nov;67(5):1211–1224. doi: 10.1161/01.res.67.5.1211. [DOI] [PubMed] [Google Scholar]
