Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Dec;116(7):2801–2810. doi: 10.1111/j.1476-5381.1995.tb15929.x

Blockade by sigma site ligands of high voltage-activated Ca2+ channels in rat and mouse cultured hippocampal pyramidal neurones.

J Church 1, E J Fletcher 1
PMCID: PMC1909231  PMID: 8680709

Abstract

1. The effects of a series of structurally-dissimilar sigma site ligands were examined on high voltage-activated Ca2+ channel activity in two preparations of cultured hippocampal pyramidal neurones. 2. In mouse hippocampal neurones under whole-cell voltage-clamp, voltage-activated Ca2+ channel currents carried by barium ions (IBa) were reduced with the rank order (IC50 values in microM): 1S,2R-(-)-cis-N-methyl-N-[2-(3,4-dichlorophenyl)ethyl]- 2-(1-pyrrolidinyl)cyclohexylamine (7.8) > rimcazole (13) > haloperidol (16) > ifenprodil (18) > opipramol (32) > carbetapentane (40) = 1-benzylspiro[1,2,3,4-tetrahydronaphthalene-1,4-piperidine] (42) > caramiphen (47) > dextromethorphan (73). At the highest concentrations tested, the compounds almost abolished IBa in the absence of any other pharmacological agent. 3. The current-voltage characteristics of the whole-cell IBa were unaffected by the test compounds. The drug-induced block was rapid in onset and offset, with the exceptions of carbetapentane and caramiphen where full block was achieved only after two to three voltage-activated currents and was associated with an apparent increase in the rate of inactivation of IBa. 4. In rat hippocampal neurones loaded with the Ca(2+)-sensitive dye Fura-2, rises in intracellular free Ca2+ concentration evoked by transient exposure to 50 mM K(+)-containing medium, either in the absence or in the presence of 10 microM nifedipine (to block L-type high voltage-activated Ca2+ channels), were also reversibly attenuated by the sigma ligands. The rank order potencies for the compounds in these experimental paradigms were similar to that observed for blockade of IBa in the electrophysiological studies. 5. These results indicate that, at micromolar concentrations, the compounds tested block multiple subtypes of high voltage-activated Ca2+ channels. These actions, which do not appear to be mediated by high-affinity sigma binding sites, may play a role in some of the functional effects previously described for the compounds.

Full text

PDF
2801

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Annels S. J., Ellis Y., Davies J. A. Non-opioid antitussives inhibit endogenous glutamate release from rabbit hippocampal slices. Brain Res. 1991 Nov 15;564(2):341–343. doi: 10.1016/0006-8993(91)91474-f. [DOI] [PubMed] [Google Scholar]
  2. Apland J. P., Braitman D. J. Effects of non-opioid antitussives on epileptiform activity and NMDA responses in hippocampal and olfactory cortex slices. Brain Res. 1990 Oct 8;529(1-2):277–285. doi: 10.1016/0006-8993(90)90838-3. [DOI] [PubMed] [Google Scholar]
  3. Aram J. A., Martin D., Tomczyk M., Zeman S., Millar J., Pohler G., Lodge D. Neocortical epileptogenesis in vitro: studies with N-methyl-D-aspartate, phencyclidine, sigma and dextromethorphan receptor ligands. J Pharmacol Exp Ther. 1989 Jan;248(1):320–328. [PubMed] [Google Scholar]
  4. Barnes J. M., Barnes N. M., Barber P. C., Champaneria S., Costall B., Hornsby C. D., Ironside J. W., Naylor R. J. Pharmacological comparison of the sigma recognition site labelled by [3H]haloperidol in human and rat cerebellum. Naunyn Schmiedebergs Arch Pharmacol. 1992 Feb;345(2):197–202. doi: 10.1007/BF00165736. [DOI] [PubMed] [Google Scholar]
  5. Beart P. M., O'Shea R. D., Manallack D. T. Regulation of sigma-receptors: high- and low-affinity agonist states, GTP shifts, and up-regulation by rimcazole and 1,3-Di(2-tolyl)guanidine. J Neurochem. 1989 Sep;53(3):779–788. doi: 10.1111/j.1471-4159.1989.tb11773.x. [DOI] [PubMed] [Google Scholar]
  6. Benham C. D., Brown T. H., Cooper D. G., Evans M. L., Harries M. H., Herdon H. J., Meakin J. E., Murkitt K. L., Patel S. R., Roberts J. C. SB 201823-A, a neuronal Ca2+ antagonist is neuroprotective in two models of cerebral ischaemia. Neuropharmacology. 1993 Nov;32(11):1249–1257. doi: 10.1016/0028-3908(93)90019-y. [DOI] [PubMed] [Google Scholar]
  7. Biton B., Granger P., Carreau A., Depoortere H., Scatton B., Avenet P. The NMDA receptor antagonist eliprodil (SL 82.0715) blocks voltage-operated Ca2+ channels in rat cultured cortical neurons. Eur J Pharmacol. 1994 May 23;257(3):297–301. doi: 10.1016/0014-2999(94)90142-2. [DOI] [PubMed] [Google Scholar]
  8. Burke S. P., Adams M. E., Taylor C. P. Inhibition of endogenous glutamate release from hippocampal tissue by Ca2+ channel toxins. Eur J Pharmacol. 1993 Jul 20;238(2-3):383–386. doi: 10.1016/0014-2999(93)90870-n. [DOI] [PubMed] [Google Scholar]
  9. Cagnotto A., Bastone A., Mennini T. [3H](+)-pentazocine binding to rat brain sigma 1 receptors. Eur J Pharmacol. 1994 Jan 15;266(2):131–138. doi: 10.1016/0922-4106(94)90102-3. [DOI] [PubMed] [Google Scholar]
  10. Church J., Fletcher E. J., Abdel-Hamid K., MacDonald J. F. Loperamide blocks high-voltage-activated calcium channels and N-methyl-D-aspartate-evoked responses in rat and mouse cultured hippocampal pyramidal neurons. Mol Pharmacol. 1994 Apr;45(4):747–757. [PubMed] [Google Scholar]
  11. Church J., Fletcher E. J., Baxter K., MacDonald J. F. Blockade by ifenprodil of high voltage-activated Ca2+ channels in rat and mouse cultured hippocampal pyramidal neurones: comparison with N-methyl-D-aspartate receptor antagonist actions. Br J Pharmacol. 1994 Oct;113(2):499–507. doi: 10.1111/j.1476-5381.1994.tb17017.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cousin M. A., Nicholls D. G., Pocock J. M. Flunarizine inhibits both calcium-dependent and -independent release of glutamate from synaptosomes and cultured neurones. Brain Res. 1993 Mar 26;606(2):227–236. doi: 10.1016/0006-8993(93)90989-z. [DOI] [PubMed] [Google Scholar]
  13. Czuczwar S. J., Gasior M., Janusz W., Kleinrok Z. Influence of flunarizine, nicardipine and nimodipine on the anticonvulsant activity of different antiepileptic drugs in mice. Neuropharmacology. 1992 Nov;31(11):1179–1183. doi: 10.1016/0028-3908(92)90015-h. [DOI] [PubMed] [Google Scholar]
  14. DeCoster M. A., Klette K. L., Knight E. S., Tortella F. C. Sigma receptor-mediated neuroprotection against glutamate toxicity in primary rat neuronal cultures. Brain Res. 1995 Feb 6;671(1):45–53. doi: 10.1016/0006-8993(94)01294-r. [DOI] [PubMed] [Google Scholar]
  15. Deshpande J. K., Wieloch T. Flunarizine, a calcium entry blocker, ameliorates ischemic brain damage in the rat. Anesthesiology. 1986 Feb;64(2):215–224. doi: 10.1097/00000542-198602000-00015. [DOI] [PubMed] [Google Scholar]
  16. Deutsch S. I., Weizman A., Goldman M. E., Morihisa J. M. The sigma receptor: a novel site implicated in psychosis and antipsychotic drug efficacy. Clin Neuropharmacol. 1988 Apr;11(2):105–119. [PubMed] [Google Scholar]
  17. Ellis Y., Davies J. A. The effects of sigma ligands on the release of glutamate from rat striatal slices. Naunyn Schmiedebergs Arch Pharmacol. 1994 Aug;350(2):143–148. doi: 10.1007/BF00241088. [DOI] [PubMed] [Google Scholar]
  18. Ferris C. D., Hirsch D. J., Brooks B. P., Snowman A. M., Snyder S. H. [3H]opipramol labels a novel binding site and sigma receptors in rat brain membranes. Mol Pharmacol. 1991 Feb;39(2):199–204. [PubMed] [Google Scholar]
  19. Ferris R. M., Tang F. L., Chang K. J., Russell A. Evidence that the potential antipsychotic agent rimcazole (BW 234U) is a specific, competitive antagonist of sigma sites in brain. Life Sci. 1986 Jun 23;38(25):2329–2337. doi: 10.1016/0024-3205(86)90640-5. [DOI] [PubMed] [Google Scholar]
  20. Ffrench-Mullen J. M., Rogawski M. A. Phencyclidine block of calcium current in isolated guinea-pig hippocampal neurones. J Physiol. 1992 Oct;456:85–105. doi: 10.1113/jphysiol.1992.sp019328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Fletcher E. J., Church J., Abdel-Hamid K., MacDonald J. F. Blockade by sigma site ligands of N-methyl-D-aspartate-evoked responses in rat and mouse cultured hippocampal pyramidal neurones. Br J Pharmacol. 1995 Dec;116(7):2791–2800. doi: 10.1111/j.1476-5381.1995.tb15928.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Fletcher E. J., Church J., MacDonald J. F. Haloperidol blocks voltage-activated Ca2+ channels in hippocampal neurones. Eur J Pharmacol. 1994 Apr 15;267(2):249–252. doi: 10.1016/0922-4106(94)90178-3. [DOI] [PubMed] [Google Scholar]
  23. Gotti B., Benavides J., MacKenzie E. T., Scatton B. The pharmacotherapy of focal cortical ischaemia in the mouse. Brain Res. 1990 Jul 9;522(2):290–307. doi: 10.1016/0006-8993(90)91473-t. [DOI] [PubMed] [Google Scholar]
  24. Heinemann U., Hamon B. Calcium and epileptogenesis. Exp Brain Res. 1986;65(1):1–10. doi: 10.1007/BF00243826. [DOI] [PubMed] [Google Scholar]
  25. Klein M., Musacchio J. M. High affinity dextromethorphan binding sites in guinea pig brain. Effect of sigma ligands and other agents. J Pharmacol Exp Ther. 1989 Oct;251(1):207–215. [PubMed] [Google Scholar]
  26. Lobner D., Lipton P. Sigma-ligands and non-competitive NMDA antagonists inhibit glutamate release during cerebral ischemia. Neurosci Lett. 1990 Sep 4;117(1-2):169–174. doi: 10.1016/0304-3940(90)90139-z. [DOI] [PubMed] [Google Scholar]
  27. Luebke J. I., Dunlap K., Turner T. J. Multiple calcium channel types control glutamatergic synaptic transmission in the hippocampus. Neuron. 1993 Nov;11(5):895–902. doi: 10.1016/0896-6273(93)90119-c. [DOI] [PubMed] [Google Scholar]
  28. Löscher W., Hönack D. Differences in anticonvulsant potency and adverse effects between dextromethorphan and dextrorphan in amygdala-kindled and non-kindled rats. Eur J Pharmacol. 1993 Jul 20;238(2-3):191–200. doi: 10.1016/0014-2999(93)90847-b. [DOI] [PubMed] [Google Scholar]
  29. Manallack D. T., Wong M. G., Costa M., Andrews P. R., Beart P. M. Receptor site topographies for phencyclidine-like and sigma drugs: predictions from quantitative conformational, electrostatic potential, and radioreceptor analyses. Mol Pharmacol. 1988 Dec;34(6):863–879. [PubMed] [Google Scholar]
  30. Mangano T. J., Patel J., Salama A. I., Keith R. A. Inhibition of K(+)-evoked [3H]D-aspartate release and neuronal calcium influx by verapamil, diltiazem and dextromethorphan: evidence for non-L/non-N voltage-sensitive calcium channels. Eur J Pharmacol. 1991 Jan 3;192(1):9–17. doi: 10.1016/0014-2999(91)90062-u. [DOI] [PubMed] [Google Scholar]
  31. McLarnon J., Sawyer D., Church J. The actions of L-687,384, a sigma receptor ligand, on NMDA-induced currents in cultured rat hippocampal pyramidal neurons. Neurosci Lett. 1994 Jun 20;174(2):181–184. doi: 10.1016/0304-3940(94)90016-7. [DOI] [PubMed] [Google Scholar]
  32. Mintz I. M., Adams M. E., Bean B. P. P-type calcium channels in rat central and peripheral neurons. Neuron. 1992 Jul;9(1):85–95. doi: 10.1016/0896-6273(92)90223-z. [DOI] [PubMed] [Google Scholar]
  33. Musacchio J. M., Klein M., Paturzo J. J. Effects of dextromethorphan site ligands and allosteric modifiers on the binding of (+)-[3H]3-(-3-hydroxyphenyl)-N-(1-propyl)piperidine. Mol Pharmacol. 1989 Jan;35(1):1–5. [PubMed] [Google Scholar]
  34. Netzer R., Pflimlin P., Trube G. Dextromethorphan blocks N-methyl-D-aspartate-induced currents and voltage-operated inward currents in cultured cortical neurons. Eur J Pharmacol. 1993 Jul 20;238(2-3):209–216. doi: 10.1016/0014-2999(93)90849-d. [DOI] [PubMed] [Google Scholar]
  35. Ozawa S., Tsuzuki K., Iino M., Ogura A., Kudo Y. Three types of voltage-dependent calcium current in cultured rat hippocampal neurons. Brain Res. 1989 Aug 28;495(2):329–336. doi: 10.1016/0006-8993(89)90225-4. [DOI] [PubMed] [Google Scholar]
  36. Pontecorvo M. J., Karbon E. W., Goode S., Clissold D. B., Borosky S. A., Patch R. J., Ferkany J. W. Possible cerebroprotective and in vivo NMDA antagonist activities of sigma agents. Brain Res Bull. 1991 Mar;26(3):461–465. doi: 10.1016/0361-9230(91)90025-f. [DOI] [PubMed] [Google Scholar]
  37. Rane S. G., Holz G. G., 4th, Dunlap K. Dihydropyridine inhibition of neuronal calcium current and substance P release. Pflugers Arch. 1987 Aug;409(4-5):361–366. doi: 10.1007/BF00583789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rao T. S., Cler J. A., Mick S. J., Ragan D. M., Lanthorn T. H., Contreras P. C., Iyengar S., Wood P. L. Opipramol, a potent sigma ligand, is an anti-ischemic agent: neurochemical evidence for an interaction with the N-methyl-D-aspartate receptor complex in vivo by cerebellar cGMP measurements. Neuropharmacology. 1990 Dec;29(12):1199–1204. doi: 10.1016/0028-3908(90)90045-s. [DOI] [PubMed] [Google Scholar]
  39. Rothman R. B., Reid A., Mahboubi A., Kim C. H., De Costa B. R., Jacobson A. E., Rice K. C. Labeling by [3H]1,3-di(2-tolyl)guanidine of two high affinity binding sites in guinea pig brain: evidence for allosteric regulation by calcium channel antagonists and pseudoallosteric modulation by sigma ligands. Mol Pharmacol. 1991 Feb;39(2):222–232. [PubMed] [Google Scholar]
  40. Sah D. W., Bean B. P. Inhibition of P-type and N-type calcium channels by dopamine receptor antagonists. Mol Pharmacol. 1994 Jan;45(1):84–92. [PubMed] [Google Scholar]
  41. Tortella F. C., Pellicano M., Bowery N. G. Dextromethorphan and neuromodulation: old drug coughs up new activities. Trends Pharmacol Sci. 1989 Dec;10(12):501–507. doi: 10.1016/0165-6147(89)90050-3. [DOI] [PubMed] [Google Scholar]
  42. Tsien R. W., Lipscombe D., Madison D. V., Bley K. R., Fox A. P. Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci. 1988 Oct;11(10):431–438. doi: 10.1016/0166-2236(88)90194-4. [DOI] [PubMed] [Google Scholar]
  43. Tytgat J., Pauwels P. J., Vereecke J., Carmeliet E. Flunarizine inhibits a high-threshold inactivating calcium channel (N-type) in isolated hippocampal neurons. Brain Res. 1991 May 17;549(1):112–117. doi: 10.1016/0006-8993(91)90606-v. [DOI] [PubMed] [Google Scholar]
  44. Walker J. M., Bowen W. D., Walker F. O., Matsumoto R. R., De Costa B., Rice K. C. Sigma receptors: biology and function. Pharmacol Rev. 1990 Dec;42(4):355–402. [PubMed] [Google Scholar]
  45. Wheeler D. B., Randall A., Tsien R. W. Roles of N-type and Q-type Ca2+ channels in supporting hippocampal synaptic transmission. Science. 1994 Apr 1;264(5155):107–111. doi: 10.1126/science.7832825. [DOI] [PubMed] [Google Scholar]
  46. de Costa B. R., Rice K. C., Bowen W. D., Thurkauf A., Rothman R. B., Band L., Jacobson A. E., Radesca L., Contreras P. C., Gray N. M. Synthesis and evaluation of N-substituted cis-N-methyl-2-(1-pyrrolidinyl)cyclohexylamines as high affinity sigma receptor ligands. Identification of a new class of highly potent and selective sigma receptor probes. J Med Chem. 1990 Nov;33(11):3100–3110. doi: 10.1021/jm00173a030. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES