Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Dec;116(7):3049–3055. doi: 10.1111/j.1476-5381.1995.tb15962.x

Neuromuscular blocking profile of the vecuronium analogue, Org-9487, in the rat isolated hemidiaphragm preparation.

C Prior 1, L Tian 1, A I el Mallah 1, L Young 1, J M Ward 1
PMCID: PMC1909232  PMID: 8680742

Abstract

1. The neuromuscular effects of the short-acting aminosteroid muscle relaxant Org-9487 have been studied in the in vitro rat phrenic nerve/hemidiaphragm preparation by use of twitch tension and electrophysiological recording techniques. 2. Org-9487 (5-100 microM) produced a concentration-dependent decrease in the amplitude of twitches (0.1 Hz) and tetanic contractions (50 Hz) evoked by motor nerve stimulation. The compound produced fade of force during both 50 Hz stimulation and train-of-four stimulation at 2 Hz, indicating a prejunctional component of action. 3. Anticholinesterases only partially reversed the effect of Org-9487 on twitch responses. This was possibly because, at the concentrations required to block twitches in the rat, Org-9487 itself was found to possess significant anticholinesterase activity. 4. Org-9487 (3 microM) increased the rundown of endplate current amplitudes during a 2 s train of 50 Hz nerve stimulation. This was because Org-9487 increased the quantal content of the first endplate current in the train without affecting acetylcholine release towards the latter part of the train. 5. Org-9487 (10 microM) produced a voltage-dependent decrease in the time constant of decay of endplate currents at 32 degrees C and 0.5 Hz, indicative of a block of endplate ion channels. The blocking rate constant increased with membrane hyperpolarization.

Full text

PDF
3049

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams P. R. Drug blockade of open end-plate channels. J Physiol. 1976 Sep;260(3):531–552. doi: 10.1113/jphysiol.1976.sp011530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adams P. R. Voltage jump analysis of procaine action at frog end-plate. J Physiol. 1977 Jun;268(2):291–318. doi: 10.1113/jphysiol.1977.sp011858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barstad J. A., Lilleheil G. Transversaly cut diaphragm preparation from rat. An adjuvant tool in the study of the physiology and pbarmacology of the myoneural junction. Arch Int Pharmacodyn Ther. 1968 Oct;175(2):373–390. [PubMed] [Google Scholar]
  4. Blount K., Johnson A., Prior C., Marshall I. G. alpha-Conotoxin GI produces tetanic fade at the rat neuromuscular junction. Toxicon. 1992 Aug;30(8):835–842. doi: 10.1016/0041-0101(92)90381-e. [DOI] [PubMed] [Google Scholar]
  5. Bowman W. C. Prejunctional and postjunctional cholinoceptors at the neuromuscular junction. Anesth Analg. 1980 Dec;59(12):935–943. [PubMed] [Google Scholar]
  6. Bowman W. C., Prior C., Marshall I. G. Presynaptic receptors in the neuromuscular junction. Ann N Y Acad Sci. 1990;604:69–81. doi: 10.1111/j.1749-6632.1990.tb31983.x. [DOI] [PubMed] [Google Scholar]
  7. Bowman W. C., Rodger I. W., Houston J., Marshall R. J., McIndewar I. Structure:action relationships among some desacetoxy analogues of pancuronium and vecuronium in the anesthetized cat. Anesthesiology. 1988 Jul;69(1):57–62. [PubMed] [Google Scholar]
  8. Braga M. F., Rowan E. G., Harvey A. L., Bowman W. C. Prejunctional action of neostigmine on mouse neuromuscular preparations. Br J Anaesth. 1993 Apr;70(4):405–410. doi: 10.1093/bja/70.4.405. [DOI] [PubMed] [Google Scholar]
  9. Colquhoun D., Dreyer F., Sheridan R. E. The actions of tubocurarine at the frog neuromuscular junction. J Physiol. 1979 Aug;293:247–284. doi: 10.1113/jphysiol.1979.sp012888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dionne V. E., Stevens C. F. Voltage dependence of agonist effectiveness at the frog neuromuscular junction: resolution of a paradox. J Physiol. 1975 Oct;251(2):245–270. doi: 10.1113/jphysiol.1975.sp011090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
  12. Fiekers J. F. Concentration-dependent effects of neostigmine on the endplate acetylcholine receptor channel complex. J Neurosci. 1985 Feb;5(2):502–514. doi: 10.1523/JNEUROSCI.05-02-00502.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gibb A. J., Marshall I. G. Examination of the mechanisms involved in tetanic fade produced by vecuronium and related analogues in the rat diaphragm. Br J Pharmacol. 1987 Mar;90(3):511–521. doi: 10.1111/j.1476-5381.1987.tb11200.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gibb A. J., Marshall I. G. Nicotinic antagonists produce differing amounts of tetanic fade in the isolated diaphragm of the rat. Br J Pharmacol. 1986 Nov;89(3):619–624. doi: 10.1111/j.1476-5381.1986.tb11164.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gibb A. J., Marshall I. G. Pre-and post-junctional effects of tubocurarine and other nicotinic antagonists during repetitive stimulation in the rat. J Physiol. 1984 Jun;351:275–297. doi: 10.1113/jphysiol.1984.sp015245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Glavinović M. I. Change of statistical parameters of transmitter release during various kinetic tests in unparalysed voltage-clamped rat diaphragm. J Physiol. 1979 May;290(2):481–497. doi: 10.1113/jphysiol.1979.sp012785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Harvey A. L., Marshall I. G. A comparison of the effects of aminopyridines on isolated chicken and rat skeletal muscle preparations. Comp Biochem Physiol C. 1977;58(2C):161–165. doi: 10.1016/0306-4492(77)90098-3. [DOI] [PubMed] [Google Scholar]
  18. Magleby K. L., Terrar D. A. Factors affecting the time course of decay of end-plate currents: a possible cooperative action of acetylcholine on receptors at the frog neuromuscular junction. J Physiol. 1975 Jan;244(2):467–495. doi: 10.1113/jphysiol.1975.sp010808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Miyamoto M. D. Binomial analysis of quantal transmitter release at glycerol treated frog neuromuscular junctions. J Physiol. 1975 Aug;250(1):121–142. doi: 10.1113/jphysiol.1975.sp011045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Muir A. W., Anderson K., Marshall R. J., Booij L. H., Crul J. F., Prior C., Bowman W. C., Marshall I. G. The effects of a 16-N-homopiperidino analogue of vecuronium on neuromuscular transmission in anaesthetized cats, pigs, dogs and monkeys, and in isolated preparations. Acta Anaesthesiol Scand. 1991 Jan;35(1):85–90. doi: 10.1111/j.1399-6576.1991.tb03247.x. [DOI] [PubMed] [Google Scholar]
  21. Prior C., Dempster J., Marshall I. G. Electrophysiological analysis of transmission at the skeletal neuromuscular junction. J Pharmacol Toxicol Methods. 1993 Sep;30(1):1–17. doi: 10.1016/1056-8719(93)90002-v. [DOI] [PubMed] [Google Scholar]
  22. Ruff R. L. A quantitative analysis of local anaesthetic alteration of miniature end-plate currents and end-plate current fluctuations. J Physiol. 1977 Jan;264(1):89–124. doi: 10.1113/jphysiol.1977.sp011659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ruff R. L. The kinetics of local anesthetic blockade of end-plate channels. Biophys J. 1982 Mar;37(3):625–631. [PMC free article] [PubMed] [Google Scholar]
  24. Thomsen R. H., Wilson D. F. Effects of 4-aminopyridine and 3,4-diaminopyridine on transmitter release at the neuromuscular junction. J Pharmacol Exp Ther. 1983 Oct;227(1):260–265. [PubMed] [Google Scholar]
  25. Tian L., Mehta M. P., Prior C., Marshall I. G. Relative pre- and postjunctional effects of a new vecuronium analogue, Org 9426, at the rat neuromuscular junction. Br J Anaesth. 1992 Sep;69(3):284–287. doi: 10.1093/bja/69.3.284. [DOI] [PubMed] [Google Scholar]
  26. Tian L., Prior C., Dempster J., Marshall I. G. Nicotinic antagonist-produced frequency-dependent changes in acetylcholine release from rat motor nerve terminals. J Physiol. 1994 May 1;476(3):517–529. doi: 10.1113/jphysiol.1994.sp020151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wierda J. M., Beaufort A. M., Kleef U. W., Smeulers N. J., Agoston S. Preliminary investigations of the clinical pharmacology of three short-acting non-depolarizing neuromuscular blocking agents, Org 9453, Org 9489 and Org 9487. Can J Anaesth. 1994 Mar;41(3):213–220. doi: 10.1007/BF03009833. [DOI] [PubMed] [Google Scholar]
  28. Wilson D. F. Influence of presynaptic receptors on neuromuscular transmission in rat. Am J Physiol. 1982 May;242(5):C366–C372. doi: 10.1152/ajpcell.1982.242.5.C366. [DOI] [PubMed] [Google Scholar]
  29. Yost C. S., Maestrone E. Clinical concentrations of edrophonium enhance desensitization of the nicotinic acetylcholine receptor. Anesth Analg. 1994 Mar;78(3):520–526. doi: 10.1213/00000539-199403000-00018. [DOI] [PubMed] [Google Scholar]
  30. van den Broek L., Wierda J. M., Proost J. H., Hommes F. D., Agoston S. Clinical pharmacology of ORG 7617, a short-acting non-depolarizing neuromuscular blocking agent. Eur J Clin Pharmacol. 1994;46(3):225–229. doi: 10.1007/BF00192553. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES