Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Dec;116(7):2909–2918. doi: 10.1111/j.1476-5381.1995.tb15944.x

A novel P2-purinoceptor expressed by a subpopulation of astrocytes from the dorsal spinal cord of the rat.

C Ho 1, J Hicks 1, M W Salter 1
PMCID: PMC1909233  PMID: 8680724

Abstract

1. Astrocytes from the dorsal spinal cord express P2-purinoceptors which, when stimulated, produce a rise in the intracellular level of free Ca2+ ([Ca2+]i). Previously we have found that the P2Y class of receptor is expressed by nearly all astrocytes from the dorsal horn. To determine whether other metabotropic P2-purinoceptor classes are also present, in this study we investigated the effects of UTP. 2. Application of UTP (1-500 microM, 5-20 s) produced a transient rise in [Ca2+]i in a subpopulation of astrocytes. The magnitude of the peak increase in [Ca2+]i was dependent upon UTP concentration and the EC50 was found to be 5.2 +/- 0.2 microM. Ca2+ responses were maximum at 100 microM UTP. 3. The rise in [Ca2+]i in response to UTP was not affected by removal of extracellular Ca2+. On the other hand, application of the sarcoplasmic-endoplasmic reticulum Ca(2+)-ATPase inhibitor, thapsigargin, abolished responses to UTP. These findings indicate that UTP stimulates the release of Ca2+ from a thapsigargin-sensitive intracellular pool. 4. The Ca2+ response to UTP was unaffected by treatment with pertussis toxin, suggesting that UTP responses may be mediated via a pertussis toxin-insensitive G protein. 5. While all cells tested (n = 52) responded to the P2Y-purinoceptor agonist, 2-methylthio-ATP, only a subpopulation of astrocytes (n = 67/93) was responsive to UTP. The presence of UTP-sensitive and UTP-insensitive cells requires the existence of two discrete types of receptor. One receptor, expressed by UTP-insensitive cells, appears to be activated selectively by 2-methylthio-ATP. 6. To investigate whether UTP and 2-methylthio-ATP activate a common type of receptor in UTP-responsive cells, a cross-desensitization strategy was used. Desensitization with prolonged exposure to a high concentration of 2-methylthio-ATP failed to affect responses to UTP and vice versa, indicating that receptors activated by UTP are distinct from those activated by 2-methylthio-ATP. 7. The P2-purinoceptor antagonist, suramin (100 microM), blocked Ca2+ responses to UTP and to 2-methylthio-ATP. 8. Pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS), has been reported to block responses mediated by P2X- and P2Y-purinoceptors in other systems and therefore we investigated its effects on responses to 2-methylthio-ATP and to UTP. PPADS was found to block Ca2+ responses to 2-methylthio-ATP in a concentration-dependent manner with an IC50 of 0.92 +/- 0.1 microM. PPADS also blocked UTP-evoked responses and the IC50 was 7.2 +/- 1.9 microM. At a concentration of 10 microM, PPADS produced a rightward shift in the dose-response curve for UTP and did not affect the maximum response. 9. Calcium responses evoked by the muscarinic agonist, carbachol, were unaffected either by suramin (100 microM) or by PPADS (50 microM). 10. The present results indicate the presence of a novel class of metabotropic P2U-purinoceptor in dorsal spinal astrocytes. In contrast to P2Y-purinoceptors, the P2U-purinoceptor is expressed only by a subpopulation of astrocytes and its sensitivity to suramin and PPADS distinguish this receptor from P2U-purinoceptors found in other tissues.

Full text

PDF
2909

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barres B. A. New roles for glia. J Neurosci. 1991 Dec;11(12):3685–3694. doi: 10.1523/JNEUROSCI.11-12-03685.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bean B. P. Pharmacology and electrophysiology of ATP-activated ion channels. Trends Pharmacol Sci. 1992 Mar;13(3):87–90. doi: 10.1016/0165-6147(92)90032-2. [DOI] [PubMed] [Google Scholar]
  3. Benham C. D. ATP-activated channels gate calcium entry in single smooth muscle cells dissociated from rabbit ear artery. J Physiol. 1989 Dec;419:689–701. doi: 10.1113/jphysiol.1989.sp017893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  5. Boyer J. L., Zohn I. E., Jacobson K. A., Harden T. K. Differential effects of P2-purinoceptor antagonists on phospholipase C- and adenylyl cyclase-coupled P2Y-purinoceptors. Br J Pharmacol. 1994 Oct;113(2):614–620. doi: 10.1111/j.1476-5381.1994.tb17034.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brown H. A., Lazarowski E. R., Boucher R. C., Harden T. K. Evidence that UTP and ATP regulate phospholipase C through a common extracellular 5'-nucleotide receptor in human airway epithelial cells. Mol Pharmacol. 1991 Nov;40(5):648–655. [PubMed] [Google Scholar]
  7. Bruner G., Murphy S. Purinergic P2Y receptors on astrocytes are directly coupled to phospholipase A2. Glia. 1993 Mar;7(3):219–224. doi: 10.1002/glia.440070305. [DOI] [PubMed] [Google Scholar]
  8. Bruner G., Murphy S. UTP activates multiple second messenger systems in cultured rat astrocytes. Neurosci Lett. 1993 Nov 12;162(1-2):105–108. doi: 10.1016/0304-3940(93)90571-2. [DOI] [PubMed] [Google Scholar]
  9. Burnstock G. Overview. Purinergic mechanisms. Ann N Y Acad Sci. 1990;603:1–18. doi: 10.1111/j.1749-6632.1990.tb37657.x. [DOI] [PubMed] [Google Scholar]
  10. Carew M. A., Wu M. L., Law G. J., Tseng Y. Z., Mason W. T. Extracellular ATP activates calcium entry and mobilization via P2U-purinoceptors in rat lactotrophs. Cell Calcium. 1994 Sep;16(3):227–235. doi: 10.1016/0143-4160(94)90025-6. [DOI] [PubMed] [Google Scholar]
  11. Chen Z. P., Levy A., McArdle C. A., Lightman S. L. Pituitary ATP receptors: characterization and functional localization to gonadotropes. Endocrinology. 1994 Sep;135(3):1280–1283. doi: 10.1210/endo.135.3.8070374. [DOI] [PubMed] [Google Scholar]
  12. Chinellato A., Ragazzi E., Pandolfo L., Froldi G., Caparrotta L., Fassina G. Purine- and nucleotide-mediated relaxation of rabbit thoracic aorta: common and different sites of action. J Pharm Pharmacol. 1994 May;46(5):337–341. doi: 10.1111/j.2042-7158.1994.tb03808.x. [DOI] [PubMed] [Google Scholar]
  13. Chronic inflammatory diseases: current therapy and future perspectives. 11th European Workshop on Inflammation. Copenhagen, Denmark, May 18-19, 1989. Proceedings. Agents Actions. 1990 Jan;29(1-2):1–129. [PubMed] [Google Scholar]
  14. Connolly G. P. Evidence from desensitization studies for distinct receptors for ATP and UTP on the rat superior cervical ganglion. Br J Pharmacol. 1994 Jun;112(2):357–359. doi: 10.1111/j.1476-5381.1994.tb13079.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Cornell-Bell A. H., Finkbeiner S. M., Cooper M. S., Smith S. J. Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science. 1990 Jan 26;247(4941):470–473. doi: 10.1126/science.1967852. [DOI] [PubMed] [Google Scholar]
  16. Dani J. W., Chernjavsky A., Smith S. J. Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron. 1992 Mar;8(3):429–440. doi: 10.1016/0896-6273(92)90271-e. [DOI] [PubMed] [Google Scholar]
  17. Dave V., Gordon G. W., McCarthy K. D. Cerebral type 2 astroglia are heterogeneous with respect to their ability to respond to neuroligands linked to calcium mobilization. Glia. 1991;4(5):440–447. doi: 10.1002/glia.440040503. [DOI] [PubMed] [Google Scholar]
  18. Davidson J. S., Wakefield I. K., Sohnius U., van der Merwe P. A., Millar R. P. A novel extracellular nucleotide receptor coupled to phosphoinositidase-C in pituitary cells. Endocrinology. 1990 Jan;126(1):80–87. doi: 10.1210/endo-126-1-80. [DOI] [PubMed] [Google Scholar]
  19. Dunn P. M., Blakeley A. G. Suramin: a reversible P2-purinoceptor antagonist in the mouse vas deferens. Br J Pharmacol. 1988 Feb;93(2):243–245. doi: 10.1111/j.1476-5381.1988.tb11427.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Edwards F. A., Gibb A. J., Colquhoun D. ATP receptor-mediated synaptic currents in the central nervous system. Nature. 1992 Sep 10;359(6391):144–147. doi: 10.1038/359144a0. [DOI] [PubMed] [Google Scholar]
  21. Erb L., Lustig K. D., Sullivan D. M., Turner J. T., Weisman G. A. Functional expression and photoaffinity labeling of a cloned P2U purinergic receptor. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10449–10453. doi: 10.1073/pnas.90.22.10449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Evans R. J., Derkach V., Surprenant A. ATP mediates fast synaptic transmission in mammalian neurons. Nature. 1992 Jun 11;357(6378):503–505. doi: 10.1038/357503a0. [DOI] [PubMed] [Google Scholar]
  23. Fyffe R. E., Perl E. R. Is ATP a central synaptic mediator for certain primary afferent fibers from mammalian skin? Proc Natl Acad Sci U S A. 1984 Nov;81(21):6890–6893. doi: 10.1073/pnas.81.21.6890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  25. Guthrie P. B., Brenneman D. E., Neale E. A. Morphological and biochemical differences expressed in separate dissociated cell cultures of dorsal and ventral halves of the mouse spinal cord. Brain Res. 1987 Sep 15;420(2):313–323. doi: 10.1016/0006-8993(87)91252-2. [DOI] [PubMed] [Google Scholar]
  26. Harden T. K., Boyer J. L., Brown H. A., Cooper C. L., Jeffs R. A., Martin M. W. Biochemical properties of a P2Y-purinergic receptor. Ann N Y Acad Sci. 1990;603:256–266. doi: 10.1111/j.1749-6632.1990.tb37677.x. [DOI] [PubMed] [Google Scholar]
  27. Henning R. H., Nelemans A., van den Akker J., den Hertog A. The nucleotide receptors on mouse C2C12 myotubes. Br J Pharmacol. 1992 Aug;106(4):853–858. doi: 10.1111/j.1476-5381.1992.tb14424.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Hoiting B., Molleman A., Nelemans A., Den Hertog A. P2-purinoceptor-activated membrane currents and inositol tetrakisphosphate formation are blocked by suramin. Eur J Pharmacol. 1990 May 31;181(1-2):127–131. doi: 10.1016/0014-2999(90)90253-3. [DOI] [PubMed] [Google Scholar]
  29. Illes P., Nörenberg W. Neuronal ATP receptors and their mechanism of action. Trends Pharmacol Sci. 1993 Feb;14(2):50–54. doi: 10.1016/0165-6147(93)90030-n. [DOI] [PubMed] [Google Scholar]
  30. Inoue K., Nakazawa K., Ohara-Imaizumi M., Obama T., Fujimori K., Takanaka A. Selective and competitive antagonism by suramin of ATP-stimulated catecholamine-secretion from PC12 phaeochromocytoma cells. Br J Pharmacol. 1991 Mar;102(3):581–584. doi: 10.1111/j.1476-5381.1991.tb12216.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Jahr C. E., Jessell T. M. ATP excites a subpopulation of rat dorsal horn neurones. Nature. 1983 Aug 25;304(5928):730–733. doi: 10.1038/304730a0. [DOI] [PubMed] [Google Scholar]
  32. Kastritsis C. H., McCarthy K. D. Oligodendroglial lineage cells express neuroligand receptors. Glia. 1993 Jun;8(2):106–113. doi: 10.1002/glia.440080206. [DOI] [PubMed] [Google Scholar]
  33. Leff P., Dougall I. G. Further concerns over Cheng-Prusoff analysis. Trends Pharmacol Sci. 1993 Apr;14(4):110–112. doi: 10.1016/0165-6147(93)90080-4. [DOI] [PubMed] [Google Scholar]
  34. Lustig K. D., Shiau A. K., Brake A. J., Julius D. Expression cloning of an ATP receptor from mouse neuroblastoma cells. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5113–5117. doi: 10.1073/pnas.90.11.5113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. McLaren G. J., Lambrecht G., Mutschler E., Bäumert H. G., Sneddon P., Kennedy C. Investigation of the actions of PPADS, a novel P2x-purinoceptor antagonist, in the guinea-pig isolated vas deferens. Br J Pharmacol. 1994 Mar;111(3):913–917. doi: 10.1111/j.1476-5381.1994.tb14825.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Miller R. H., Szigeti V. Clonal analysis of astrocyte diversity in neonatal rat spinal cord cultures. Development. 1991 Sep;113(1):353–362. doi: 10.1242/dev.113.1.353. [DOI] [PubMed] [Google Scholar]
  37. Missiaen L., Parys J. B., De Smedt H., Himpens B., Casteels R. Inhibition of inositol trisphosphate-induced calcium release by caffeine is prevented by ATP. Biochem J. 1994 May 15;300(Pt 1):81–84. doi: 10.1042/bj3000081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Motte S., Pirotton S., Boeynaems J. M. Heterogeneity of ATP receptors in aortic endothelial cells. Involvement of P2y and P2u receptors in inositol phosphate response. Circ Res. 1993 Mar;72(3):504–510. doi: 10.1161/01.res.72.3.504. [DOI] [PubMed] [Google Scholar]
  39. Neary J. T., van Breemen C., Forster E., Norenberg L. O., Norenberg M. D. ATP stimulates calcium influx in primary astrocyte cultures. Biochem Biophys Res Commun. 1988 Dec 30;157(3):1410–1416. doi: 10.1016/s0006-291x(88)81032-5. [DOI] [PubMed] [Google Scholar]
  40. Nörenberg W., Langosch J. M., Gebicke-Haerter P. J., Illes P. Characterization and possible function of adenosine 5'-triphosphate receptors in activated rat microglia. Br J Pharmacol. 1994 Mar;111(3):942–950. doi: 10.1111/j.1476-5381.1994.tb14830.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. O'Connor S. E., Dainty I. A., Leff P. Further subclassification of ATP receptors based on agonist studies. Trends Pharmacol Sci. 1991 Apr;12(4):137–141. doi: 10.1016/0165-6147(91)90530-6. [DOI] [PubMed] [Google Scholar]
  42. Pearce B., Murphy S., Jeremy J., Morrow C., Dandona P. ATP-evoked Ca2+ mobilisation and prostanoid release from astrocytes: P2-purinergic receptors linked to phosphoinositide hydrolysis. J Neurochem. 1989 Mar;52(3):971–977. doi: 10.1111/j.1471-4159.1989.tb02549.x. [DOI] [PubMed] [Google Scholar]
  43. Phillis J. W., Wu P. H. The role of adenosine and its nucleotides in central synaptic transmission. Prog Neurobiol. 1981;16(3-4):187–239. doi: 10.1016/0301-0082(81)90014-9. [DOI] [PubMed] [Google Scholar]
  44. Raff M. C., Abney E. R., Cohen J., Lindsay R., Noble M. Two types of astrocytes in cultures of developing rat white matter: differences in morphology, surface gangliosides, and growth characteristics. J Neurosci. 1983 Jun;3(6):1289–1300. doi: 10.1523/JNEUROSCI.03-06-01289.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Raha S., de Souza L. R., Reed J. K. Intracellular signalling by nucleotide receptors in PC12 pheochromocytoma cells. J Cell Physiol. 1993 Mar;154(3):623–630. doi: 10.1002/jcp.1041540322. [DOI] [PubMed] [Google Scholar]
  46. Reiser G. Ca(2+)- and nitric oxide-dependent stimulation of cyclic GMP synthesis in neuronal cell line induced by P2-purinergic/pyrimidinergic receptor. J Neurochem. 1995 Jan;64(1):61–68. doi: 10.1046/j.1471-4159.1995.64010061.x. [DOI] [PubMed] [Google Scholar]
  47. Salter M. W., De Koninck Y., Henry J. L. Physiological roles for adenosine and ATP in synaptic transmission in the spinal dorsal horn. Prog Neurobiol. 1993 Aug;41(2):125–156. doi: 10.1016/0301-0082(93)90006-e. [DOI] [PubMed] [Google Scholar]
  48. Salter M. W., Henry J. L. Effects of adenosine 5'-monophosphate and adenosine 5'-triphosphate on functionally identified units in the cat spinal dorsal horn. Evidence for a differential effect of adenosine 5'-triphosphate on nociceptive vs non-nociceptive units. Neuroscience. 1985 Jul;15(3):815–825. doi: 10.1016/0306-4522(85)90080-6. [DOI] [PubMed] [Google Scholar]
  49. Salter M. W., Hicks J. L. ATP causes release of intracellular Ca2+ via the phospholipase C beta/IP3 pathway in astrocytes from the dorsal spinal cord. J Neurosci. 1995 Apr;15(4):2961–2971. doi: 10.1523/JNEUROSCI.15-04-02961.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Salter M. W., Hicks J. L. ATP-evoked increases in intracellular calcium in neurons and glia from the dorsal spinal cord. J Neurosci. 1994 Mar;14(3 Pt 2):1563–1575. doi: 10.1523/JNEUROSCI.14-03-01563.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Sipma H., den Hertog A., Nelemans A. The phospholipase C activating P2U purinoceptor also inhibits cyclicAMP formation in DDT1 MF-2 smooth muscle cells. Eur J Pharmacol. 1994 Aug 16;268(3):431–437. doi: 10.1016/0922-4106(94)90069-8. [DOI] [PubMed] [Google Scholar]
  52. Sneddon P., Burnstock G. ATP as a co-transmitter in rat tail artery. Eur J Pharmacol. 1984 Oct 30;106(1):149–152. doi: 10.1016/0014-2999(84)90688-5. [DOI] [PubMed] [Google Scholar]
  53. Sneddon P., Westfall D. P., Fedan J. S. Cotransmitters in the motor nerves of the guinea pig vas deferens: electrophysiological evidence. Science. 1982 Nov 12;218(4573):693–695. doi: 10.1126/science.6291151. [DOI] [PubMed] [Google Scholar]
  54. Stone T. W. Physiological roles for adenosine and adenosine 5'-triphosphate in the nervous system. Neuroscience. 1981;6(4):523–555. doi: 10.1016/0306-4522(81)90145-7. [DOI] [PubMed] [Google Scholar]
  55. Thayer S. A., Sturek M., Miller R. J. Measurement of neuronal Ca2+ transients using simultaneous microfluorimetry and electrophysiology. Pflugers Arch. 1988 Jul;412(1-2):216–223. doi: 10.1007/BF00583753. [DOI] [PubMed] [Google Scholar]
  56. Trezise D. J., Kennedy I., Humphrey P. P. The use of antagonists to characterize the receptors mediating depolarization of the rat isolated vagus nerve by alpha, beta-methylene adenosine 5'-triphosphate. Br J Pharmacol. 1994 May;112(1):282–288. doi: 10.1111/j.1476-5381.1994.tb13065.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Wilkinson G. F., McKechnie K., Dainty I. A., Boarder M. R. P2Y purinoceptor and nucleotide receptor-induced relaxation of precontracted bovine aortic collateral artery rings: differential sensitivity to suramin and indomethacin. J Pharmacol Exp Ther. 1994 Feb;268(2):881–887. [PubMed] [Google Scholar]
  58. Wilkinson G. F., Purkiss J. R., Boarder M. R. The regulation of aortic endothelial cells by purines and pyrimidines involves co-existing P2y-purinoceptors and nucleotide receptors linked to phospholipase C. Br J Pharmacol. 1993 Mar;108(3):689–693. doi: 10.1111/j.1476-5381.1993.tb12862.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Ziganshin A. U., Hoyle C. H., Bo X., Lambrecht G., Mutschler E., Bäumert H. G., Burnstock G. PPADS selectively antagonizes P2X-purinoceptor-mediated responses in the rabbit urinary bladder. Br J Pharmacol. 1993 Dec;110(4):1491–1495. doi: 10.1111/j.1476-5381.1993.tb13990.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Ziganshin A. U., Hoyle C. H., Lambrecht G., Mutschler E., Bümert H. G., Burnstock G. Selective antagonism by PPADS at P2X-purinoceptors in rabbit isolated blood vessels. Br J Pharmacol. 1994 Mar;111(3):923–929. doi: 10.1111/j.1476-5381.1994.tb14827.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. el-Moatassim C., Dornand J., Mani J. C. Extracellular ATP and cell signalling. Biochim Biophys Acta. 1992 Feb 19;1134(1):31–45. doi: 10.1016/0167-4889(92)90025-7. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES