Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Jan;117(2):372–376. doi: 10.1111/j.1476-5381.1996.tb15201.x

Increase in insulin release from rat pancreatic islets by quinolone antibiotics.

N Maeda 1, T Tamagawa 1, I Niki 1, H Miura 1, K Ozawa 1, G Watanabe 1, K Nonogaki 1, K Uemura 1, A Iguchi 1
PMCID: PMC1909264  PMID: 8789393

Abstract

1. The present study was undertaken to elucidate the mechanism(s) of hypoglycaemia caused by quinolone antibiotics. We investigated the effects of various quinolone antibiotics on insulin release in rat pancreatic islets. 2. At a non-stimulatory concentration of 3 mM glucose, lomefloxacin (LFLX) or sparfloxacin at 1 mM and pipemidic acid (0.1-1 mM) induced slight insulin release but tosufloxacin or enoxacin up to 100 microM did not. 3. At the stimulatory concentration of 10 mM glucose, all quinolones augmented insulin release in a dose-dependent manner. LFLX (100 microM) shifted the dose-response curve of glucose-induced insulin release to the left without altering the maximal response. 4. At 10 mM glucose, LFLX (100 microM) increased insulin release augmented by forskolin (5 microM) or 12-O-tetradecanoyl phorbol-13-acetate (100 nM) but not by raising the K+ concentration from 6 to 25 mM. 5. Verapamil (50 microM) or diazoxide (50-400 microM) antagonized the insulinotropic effect of LFLX. 6. These data suggest that quinolone antibiotics may cause hypoglycaemia by increasing insulin release via blockade of ATP-sensitive K+ channels.

Full text

PDF
372

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arkhammar P., Nilsson T., Rorsman P., Berggren P. O. Inhibition of ATP-regulated K+ channels precedes depolarization-induced increase in cytoplasmic free Ca2+ concentration in pancreatic beta-cells. J Biol Chem. 1987 Apr 25;262(12):5448–5454. [PubMed] [Google Scholar]
  2. Ashcroft F. M., Harrison D. E., Ashcroft S. J. Glucose induces closure of single potassium channels in isolated rat pancreatic beta-cells. 1984 Nov 29-Dec 5Nature. 312(5993):446–448. doi: 10.1038/312446a0. [DOI] [PubMed] [Google Scholar]
  3. Charles M. A., Fanska R., Schmid F. G., Forsham P. H., Grodsky G. M. Adenosine 3',5'-monophosphate in pancreatic islets: glucose-induced insulin release. Science. 1973 Feb 9;179(4073):569–571. doi: 10.1126/science.179.4073.569. [DOI] [PubMed] [Google Scholar]
  4. Fex G., Lernmark A. Effect of D-glucose on the incorporation of 32P into phospholipids of mouse pancreatic islets. FEBS Lett. 1972 Sep 15;25(2):287–291. doi: 10.1016/0014-5793(72)80505-2. [DOI] [PubMed] [Google Scholar]
  5. Henquin J. C., Charles S., Nenquin M., Mathot F., Tamagawa T. Diazoxide and D600 inhibition of insulin release. Distinct mechanisms explain the specificity for different stimuli. Diabetes. 1982 Sep;31(9):776–783. doi: 10.2337/diab.31.9.776. [DOI] [PubMed] [Google Scholar]
  6. Henquin J. C. D-glucose inhibits potassium efflux from pancreatic islet cells. Nature. 1978 Jan 19;271(5642):271–273. doi: 10.1038/271271a0. [DOI] [PubMed] [Google Scholar]
  7. Henquin J. C., Meissner H. P. Opposite effects of tolbutamide and diazoxide on 86Rb+ fluxes and membrane potential in pancreatic B cells. Biochem Pharmacol. 1982 Apr 1;31(7):1407–1415. doi: 10.1016/0006-2952(82)90036-3. [DOI] [PubMed] [Google Scholar]
  8. Henquin J. C. Quinine and the stimulus-secretion coupling in pancreatic beta-cells: glucose-like effects on potassium permeability and insulin release. Endocrinology. 1982 Apr;110(4):1325–1332. doi: 10.1210/endo-110-4-1325. [DOI] [PubMed] [Google Scholar]
  9. Hughes S. J., Ashcroft S. J. Effects of a phorbol ester and clomiphene on protein phosphorylation and insulin secretion in rat pancreatic islets. Biochem J. 1988 Feb 1;249(3):825–830. doi: 10.1042/bj2490825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Katada T., Ui M. Islet-activating protein. Enhanced insulin secretion and cyclic AMP accumulation in pancreatic islets due to activation of native calcium ionophores. J Biol Chem. 1979 Jan 25;254(2):469–479. [PubMed] [Google Scholar]
  11. Lipson L. G., Oldham S. B. The role of calmodulin in insulin secretion: the presence of a calmodulin-stimulatable phosphodiesterase in pancreatic islets of normal and pregnant rats. Life Sci. 1983 Feb 14;32(7):775–780. doi: 10.1016/0024-3205(83)90312-0. [DOI] [PubMed] [Google Scholar]
  12. Malaisse-Lagae F., Malaisse W. J. The stimulus-secretion coupling of glucose-induced insulin release. 3. Uptake of 45 calcium by isolated islets of Langerhans. Endocrinology. 1971 Jan;88(1):72–80. doi: 10.1210/endo-88-1-72. [DOI] [PubMed] [Google Scholar]
  13. Malaisse W. J., Garcia-Morales P., Dufrane S. P., Sener A., Valverde I. Forskolin-induced activation of adenylate cyclase, cyclic adenosine monophosphate production and insulin release in rat pancreatic islets. Endocrinology. 1984 Nov;115(5):2015–2020. doi: 10.1210/endo-115-5-2015. [DOI] [PubMed] [Google Scholar]
  14. Prentki M., Matschinsky F. M. Ca2+, cAMP, and phospholipid-derived messengers in coupling mechanisms of insulin secretion. Physiol Rev. 1987 Oct;67(4):1185–1248. doi: 10.1152/physrev.1987.67.4.1185. [DOI] [PubMed] [Google Scholar]
  15. Rorsman P., Abrahamsson H., Gylfe E., Hellman B. Dual effects of glucose on the cytosolic Ca2+ activity of mouse pancreatic beta-cells. FEBS Lett. 1984 May 7;170(1):196–200. doi: 10.1016/0014-5793(84)81398-8. [DOI] [PubMed] [Google Scholar]
  16. Sehlin J., Taljedal I. B. Glucose-induced decrease in Rb+ permeability in pancreatic beta cells. Nature. 1975 Feb 20;253(5493):635–636. doi: 10.1038/253635a0. [DOI] [PubMed] [Google Scholar]
  17. Sugden M. C., Ashcroft S. J. Cyclic nucleotide phosphodiesterase of rat pancreatic islets. Effects of Ca2+, calmodulin and trifluoperazine. Biochem J. 1981 Aug 1;197(2):459–464. doi: 10.1042/bj1970459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tanigawa K., Kuzuya H., Imura H., Taniguchi H., Baba S., Takai Y., Nishizuka Y. Calcium-activated, phospholipid-dependent protein kinase in rat pancreas islets of langerhans. Its possible role in glucose-induced insulin release. FEBS Lett. 1982 Feb 22;138(2):183–186. doi: 10.1016/0014-5793(82)80436-5. [DOI] [PubMed] [Google Scholar]
  19. Trube G., Rorsman P., Ohno-Shosaku T. Opposite effects of tolbutamide and diazoxide on the ATP-dependent K+ channel in mouse pancreatic beta-cells. Pflugers Arch. 1986 Nov;407(5):493–499. doi: 10.1007/BF00657506. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES