Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Dec;70(12):8382–8390. doi: 10.1128/jvi.70.12.8382-8390.1996

Involvement of the endoplasmic reticulum in the assembly and envelopment of African swine fever virus.

C Cobbold 1, J T Whittle 1, T Wileman 1
PMCID: PMC190927  PMID: 8970959

Abstract

African swine fever (ASF) virus is a large enveloped DNA virus assembled in the cytoplasm of cells. In this study, the membrane compartments involved in the envelopment of ASF virus were investigated. A monoclonal antibody recognizing p73, the major structural protein of ASF virus, was generated to analyze the binding of p73 to membranes during the assembly of the virus. Approximately 50% of the intracellular pool of p73 associated with membranes as a peripheral membrane protein. Binding was rapid and complete within 15 min of synthesis. Subcellular membrane fractionation showed that newly synthesized p73 molecules cosedimented with endoplasmic reticulum (ER) membranes and remained associated with the ER during a 2-h chase. A similar distribution on gradients was recorded for p17, a structural membrane protein of ASF virus. The results suggested that the ER was involved in the assembly of ASF virus. A protease protection assay demonstrated a time-dependent envelopment of the membrane bound, but not cytosolic, pool of p73. Envelopment of p73 took place 1 h after binding to membranes and was completed 1 h before the first detection of p73 in virions secreted from cells. Envelopment was unaffected by brefeldin A and monensin, drugs that block membrane transport between the ER and Golgi. Taken together the results provide evidence for the binding of ASF virus structural proteins to a specific membrane compartment and implicate a role for the ER in the assembly and envelopment of ASF virus.

Full Text

The Full Text of this article is available as a PDF (612.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arzuza O., Urzainqui A., Díaz-Ruiz J. R., Tabarés E. Morphogenesis of African swine fever virus in monkey kidney cells after reversible inhibition of replication by cycloheximide. Arch Virol. 1992;124(3-4):343–354. doi: 10.1007/BF01309814. [DOI] [PubMed] [Google Scholar]
  2. Borca M. V., Irusta P., Carrillo C., Afonso C. L., Burrage T., Rock D. L. African swine fever virus structural protein p72 contains a conformational neutralizing epitope. Virology. 1994 Jun;201(2):413–418. doi: 10.1006/viro.1994.1311. [DOI] [PubMed] [Google Scholar]
  3. Borca M. V., Kutish G. F., Afonso C. L., Irusta P., Carrillo C., Brun A., Sussman M., Rock D. L. An African swine fever virus gene with similarity to the T-lymphocyte surface antigen CD2 mediates hemadsorption. Virology. 1994 Mar;199(2):463–468. doi: 10.1006/viro.1994.1146. [DOI] [PubMed] [Google Scholar]
  4. Brew K., Shaper J. H., Olsen K. W., Trayer I. P., Hill R. L. Cross-linking of the components of lactose synthetase with dimethylpimelimidate. J Biol Chem. 1975 Feb 25;250(4):1434–1444. [PubMed] [Google Scholar]
  5. Camacho A., Viñuela E. Protein p22 of African swine fever virus: an early structural protein that is incorporated into the membrane of infected cells. Virology. 1991 Mar;181(1):251–257. doi: 10.1016/0042-6822(91)90490-3. [DOI] [PubMed] [Google Scholar]
  6. Carrascosa A. L., Saastre I., González P., Viñuela E. Localization of the African swine fever virus attachment protein P12 in the virus particle by immunoelectron microscopy. Virology. 1993 Mar;193(1):460–465. doi: 10.1006/viro.1993.1146. [DOI] [PubMed] [Google Scholar]
  7. Carrascosa A. L., del Val M., Santarén J. F., Viñuela E. Purification and properties of African swine fever virus. J Virol. 1985 May;54(2):337–344. doi: 10.1128/jvi.54.2.337-344.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carrascosa J. L., Carazo J. M., Carrascosa A. L., García N., Santisteban A., Viñuela E. General morphology and capsid fine structure of African swine fever virus particles. Virology. 1984 Jan 15;132(1):160–172. doi: 10.1016/0042-6822(84)90100-4. [DOI] [PubMed] [Google Scholar]
  9. Carrascosa J. L., González P., Carrascosa A. L., Garciá-Barreno B., Enjuanes L., Viñuela E. Localization of structural proteins in African swine fever virus particles by immunoelectron microscopy. J Virol. 1986 May;58(2):377–384. doi: 10.1128/jvi.58.2.377-384.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chacón M. R., Almazán F., Nogal M. L., Viñuela E., Rodríguez J. F. The African swine fever virus IAP homolog is a late structural polypeptide. Virology. 1995 Dec 20;214(2):670–674. doi: 10.1006/viro.1995.0083. [DOI] [PubMed] [Google Scholar]
  11. Cheung P., Banfield B. W., Tufaro F. Brefeldin A arrests the maturation and egress of herpes simplex virus particles during infection. J Virol. 1991 Apr;65(4):1893–1904. doi: 10.1128/jvi.65.4.1893-1904.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cistué C., Tabarés E. Expression in vivo and in vitro of the major structural protein (VP73) of African swine fever virus. Arch Virol. 1992;123(1-2):111–124. doi: 10.1007/BF01317142. [DOI] [PubMed] [Google Scholar]
  13. Dixon L. K., Twigg S. R., Baylis S. A., Vydelingum S., Bristow C., Hammond J. M., Smith G. L. Nucleotide sequence of a 55 kbp region from the right end of the genome of a pathogenic African swine fever virus isolate (Malawi LIL20/1). J Gen Virol. 1994 Jul;75(Pt 7):1655–1684. doi: 10.1099/0022-1317-75-7-1655. [DOI] [PubMed] [Google Scholar]
  14. Fuerst T. R., Niles E. G., Studier F. W., Moss B. Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8122–8126. doi: 10.1073/pnas.83.21.8122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. García-Beato R., Salas M. L., Viñuela E., Salas J. Role of the host cell nucleus in the replication of African swine fever virus DNA. Virology. 1992 Jun;188(2):637–649. doi: 10.1016/0042-6822(92)90518-t. [DOI] [PubMed] [Google Scholar]
  16. Gershon A. A., Sherman D. L., Zhu Z., Gabel C. A., Ambron R. T., Gershon M. D. Intracellular transport of newly synthesized varicella-zoster virus: final envelopment in the trans-Golgi network. J Virol. 1994 Oct;68(10):6372–6390. doi: 10.1128/jvi.68.10.6372-6390.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Goorha R., Murti G., Granoff A., Tirey R. Macromolecular synthesis in cells infected by frog virus 3. VIII. The nucleus is a site of frog virus 3 DNA and RNA synthesis. Virology. 1978 Jan;84(1):32–50. doi: 10.1016/0042-6822(78)90216-7. [DOI] [PubMed] [Google Scholar]
  18. Griffiths G., Rottier P. Cell biology of viruses that assemble along the biosynthetic pathway. Semin Cell Biol. 1992 Oct;3(5):367–381. doi: 10.1016/1043-4682(92)90022-N. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hingamp P. M., Arnold J. E., Mayer R. J., Dixon L. K. A ubiquitin conjugating enzyme encoded by African swine fever virus. EMBO J. 1992 Jan;11(1):361–366. doi: 10.1002/j.1460-2075.1992.tb05058.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hingamp P. M., Leyland M. L., Webb J., Twigger S., Mayer R. J., Dixon L. K. Characterization of a ubiquitinated protein which is externally located in African swine fever virions. J Virol. 1995 Mar;69(3):1785–1793. doi: 10.1128/jvi.69.3.1785-1793.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hobman T. C., Woodward L., Farquhar M. G. The rubella virus E2 and E1 spike glycoproteins are targeted to the Golgi complex. J Cell Biol. 1993 Apr;121(2):269–281. doi: 10.1083/jcb.121.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Johnson D. C., Spear P. G. Monensin inhibits the processing of herpes simplex virus glycoproteins, their transport to the cell surface, and the egress of virions from infected cells. J Virol. 1982 Sep;43(3):1102–1112. doi: 10.1128/jvi.43.3.1102-1112.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kreis T. E., Lodish H. F. Oligomerization is essential for transport of vesicular stomatitis viral glycoprotein to the cell surface. Cell. 1986 Sep 12;46(6):929–937. doi: 10.1016/0092-8674(86)90075-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Krijnse-Locker J., Ericsson M., Rottier P. J., Griffiths G. Characterization of the budding compartment of mouse hepatitis virus: evidence that transport from the RER to the Golgi complex requires only one vesicular transport step. J Cell Biol. 1994 Jan;124(1-2):55–70. doi: 10.1083/jcb.124.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lippincott-Schwartz J., Yuan L. C., Bonifacino J. S., Klausner R. D. Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER. Cell. 1989 Mar 10;56(5):801–813. doi: 10.1016/0092-8674(89)90685-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. López-Otín C., Freije J. M., Parra F., Méndez E., Viñuela E. Mapping and sequence of the gene coding for protein p72, the major capsid protein of African swine fever virus. Virology. 1990 Apr;175(2):477–484. doi: 10.1016/0042-6822(90)90432-q. [DOI] [PubMed] [Google Scholar]
  27. Machamer C. E., Mentone S. A., Rose J. K., Farquhar M. G. The E1 glycoprotein of an avian coronavirus is targeted to the cis Golgi complex. Proc Natl Acad Sci U S A. 1990 Sep;87(18):6944–6948. doi: 10.1073/pnas.87.18.6944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mao J., Tham T. N., Gentry G. A., Aubertin A., Chinchar V. G. Cloning, sequence analysis, and expression of the major capsid protein of the iridovirus frog virus 3. Virology. 1996 Feb 15;216(2):431–436. doi: 10.1006/viro.1996.0080. [DOI] [PubMed] [Google Scholar]
  29. Murti K. G., Goorha R., Granoff A. An unusual replication strategy of an animal iridovirus. Adv Virus Res. 1985;30:1–19. doi: 10.1016/s0065-3527(08)60446-7. [DOI] [PubMed] [Google Scholar]
  30. Neilan J. G., Lu Z., Afonso C. L., Kutish G. F., Sussman M. D., Rock D. L. An African swine fever virus gene with similarity to the proto-oncogene bcl-2 and the Epstein-Barr virus gene BHRF1. J Virol. 1993 Jul;67(7):4391–4394. doi: 10.1128/jvi.67.7.4391-4394.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nunes J. F., Vigário J. D., Terrinha A. M. Ultrastructural study of African swine fever virus replication in cultures of swine bone marrow cells. Arch Virol. 1975;49(1):59–66. doi: 10.1007/BF02175596. [DOI] [PubMed] [Google Scholar]
  32. Rodriguez F., Alcaraz C., Eiras A., Yáez R. J., Rodriguez J. M., Alonso C., Rodriguez J. F., Escribano J. M. Characterization and molecular basis of heterogeneity of the African swine fever virus envelope protein p54. J Virol. 1994 Nov;68(11):7244–7252. doi: 10.1128/jvi.68.11.7244-7252.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rodriguez J. M., Salas M. L., Viñuela E. Genes homologous to ubiquitin-conjugating proteins and eukaryotic transcription factor SII in African swine fever virus. Virology. 1992 Jan;186(1):40–52. doi: 10.1016/0042-6822(92)90059-x. [DOI] [PubMed] [Google Scholar]
  34. Rodríguez J. M., Yáez R. J., Almazán F., Viñuela E., Rodriguez J. F. African swine fever virus encodes a CD2 homolog responsible for the adhesion of erythrocytes to infected cells. J Virol. 1993 Sep;67(9):5312–5320. doi: 10.1128/jvi.67.9.5312-5320.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sanz A., García-Barreno B., Nogal M. L., Viñuela E., Enjuanes L. Monoclonal antibodies specific for African swine fever virus proteins. J Virol. 1985 Apr;54(1):199–206. doi: 10.1128/jvi.54.1.199-206.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Saraste J., Kuismanen E. Pathways of protein sorting and membrane traffic between the rough endoplasmic reticulum and the Golgi complex. Semin Cell Biol. 1992 Oct;3(5):343–355. doi: 10.1016/1043-4682(92)90020-V. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schmelz M., Sodeik B., Ericsson M., Wolffe E. J., Shida H., Hiller G., Griffiths G. Assembly of vaccinia virus: the second wrapping cisterna is derived from the trans Golgi network. J Virol. 1994 Jan;68(1):130–147. doi: 10.1128/jvi.68.1.130-147.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Simón-Mateo C., Andrés G., Viñuela E. Polyprotein processing in African swine fever virus: a novel gene expression strategy for a DNA virus. EMBO J. 1993 Jul;12(7):2977–2987. doi: 10.1002/j.1460-2075.1993.tb05960.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Simón-Mateo C., Freije J. M., Andrés G., López-Otín C., Viñuela E. Mapping and sequence of the gene encoding protein p17, a major African swine fever virus structural protein. Virology. 1995 Feb 1;206(2):1140–1144. doi: 10.1006/viro.1995.1039. [DOI] [PubMed] [Google Scholar]
  40. Sodeik B., Doms R. W., Ericsson M., Hiller G., Machamer C. E., van 't Hof W., van Meer G., Moss B., Griffiths G. Assembly of vaccinia virus: role of the intermediate compartment between the endoplasmic reticulum and the Golgi stacks. J Cell Biol. 1993 May;121(3):521–541. doi: 10.1083/jcb.121.3.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sun H., Jacobs S. C., Smith G. L., Dixon L. K., Parkhouse R. M. African swine fever virus gene j13L encodes a 25-27 kDa virion protein with variable numbers of amino acid repeats. J Gen Virol. 1995 May;76(Pt 5):1117–1127. doi: 10.1099/0022-1317-76-5-1117. [DOI] [PubMed] [Google Scholar]
  42. Tartakoff A. M. Perturbation of vesicular traffic with the carboxylic ionophore monensin. Cell. 1983 Apr;32(4):1026–1028. doi: 10.1016/0092-8674(83)90286-6. [DOI] [PubMed] [Google Scholar]
  43. Tooze J., Hollinshead M., Reis B., Radsak K., Kern H. Progeny vaccinia and human cytomegalovirus particles utilize early endosomal cisternae for their envelopes. Eur J Cell Biol. 1993 Feb;60(1):163–178. [PubMed] [Google Scholar]
  44. Tooze J., Tooze S., Warren G. Replication of coronavirus MHV-A59 in sac- cells: determination of the first site of budding of progeny virions. Eur J Cell Biol. 1984 Mar;33(2):281–293. [PubMed] [Google Scholar]
  45. Tooze S. A., Tooze J., Warren G. Site of addition of N-acetyl-galactosamine to the E1 glycoprotein of mouse hepatitis virus-A59. J Cell Biol. 1988 May;106(5):1475–1487. doi: 10.1083/jcb.106.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Viñuela E. African swine fever virus. Curr Top Microbiol Immunol. 1985;116:151–170. doi: 10.1007/978-3-642-70280-8_8. [DOI] [PubMed] [Google Scholar]
  47. Whealy M. E., Card J. P., Meade R. P., Robbins A. K., Enquist L. W. Effect of brefeldin A on alphaherpesvirus membrane protein glycosylation and virus egress. J Virol. 1991 Mar;65(3):1066–1081. doi: 10.1128/jvi.65.3.1066-1081.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wileman T., Kane L. P., Young J., Carson G. R., Terhorst C. Associations between subunit ectodomains promote T cell antigen receptor assembly and protect against degradation in the ER. J Cell Biol. 1993 Jul;122(1):67–78. doi: 10.1083/jcb.122.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Young J., Kane L. P., Exley M., Wileman T. Regulation of selective protein degradation in the endoplasmic reticulum by redox potential. J Biol Chem. 1993 Sep 15;268(26):19810–19818. [PubMed] [Google Scholar]
  50. Yáez R. J., Rodríguez J. M., Nogal M. L., Yuste L., Enríquez C., Rodriguez J. F., Viñuela E. Analysis of the complete nucleotide sequence of African swine fever virus. Virology. 1995 Apr 1;208(1):249–278. doi: 10.1006/viro.1995.1149. [DOI] [PubMed] [Google Scholar]
  51. Zhu Z., Gershon M. D., Hao Y., Ambron R. T., Gabel C. A., Gershon A. A. Envelopment of varicella-zoster virus: targeting of viral glycoproteins to the trans-Golgi network. J Virol. 1995 Dec;69(12):7951–7959. doi: 10.1128/jvi.69.12.7951-7959.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. del Val M., Viñuela E. Glycosylated components induced in African swine fever (ASF) virus-infected Vero cells. Virus Res. 1987 Jun;7(4):297–308. doi: 10.1016/0168-1702(87)90044-x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES