Abstract
1 The effects of the inhibition of monoamine oxidase (MAO) type A and B have been evaluated on the spontaneous firing activity of the dopaminergic (principal) neurones of the rat midbrain intracellularly recorded from a slice preparation. 2 The non-specific MAO inhibitor, pargyline, superfused at a concentration of 10-100 microM, decreased or abolished the spontaneous firing discharge of the principal neurons in the subtantia nigra pars compacta and ventral tegmental area. This effect had a slow onset and appeared to be sustained. 3 The administration of the dopamine D2/3 receptor antagonist, sulpiride (100-300 nM), antagonized the pargyline-induced effect, while the superfusion of the dopamine D1 receptor antagonist, SCH 23390 (1-3 microM) did not counteract the induced inhibition of the firing rate. 4 The inhibitor for the MAO A, clorgyline (30-100 microM), reduced the firing rate of the dopaminergic neurones. A similar depressant effect was also observed when a MAO B inhibitor, deprenyl (30-100 microM), was applied. Lower concentrations of both drugs (300 nM-10 microM) did not produce consistent effects on neuronal discharge. 5 Our data suggest that only the blockade of both types of MAO enzymes favours the inhibitory action of endogenous dopamine on somato-dendritic D2/3 autoreceptors.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Butcher S. P., Fairbrother I. S., Kelly J. S., Arbuthnott G. W. Effects of selective monoamine oxidase inhibitors on the in vivo release and metabolism of dopamine in the rat striatum. J Neurochem. 1990 Sep;55(3):981–988. doi: 10.1111/j.1471-4159.1990.tb04587.x. [DOI] [PubMed] [Google Scholar]
- Commissiong J. W. Monoamine metabolites: their relationship and lack of relationship to monoaminergic neuronal activity. Biochem Pharmacol. 1985 Apr 15;34(8):1127–1131. doi: 10.1016/0006-2952(85)90484-8. [DOI] [PubMed] [Google Scholar]
- Demarest K. T., Smith D. J., Azzaro A. J. The presence of the type A form of monoamine oxidase within nigrostriatal dopamine-containing neurons. J Pharmacol Exp Ther. 1980 Nov;215(2):461–468. [PubMed] [Google Scholar]
- Engberg G., Elebring T., Nissbrandt H. Deprenyl (selegiline), a selective MAO-B inhibitor with active metabolites; effects on locomotor activity, dopaminergic neurotransmission and firing rate of nigral dopamine neurons. J Pharmacol Exp Ther. 1991 Nov;259(2):841–847. [PubMed] [Google Scholar]
- Francis A., Pearce L. B., Roth J. A. Cellular localization of MAO A and B in brain: evidence from kainic acid lesions in striatum. Brain Res. 1985 May 13;334(1):59–64. doi: 10.1016/0006-8993(85)90567-0. [DOI] [PubMed] [Google Scholar]
- Grace A. A., Onn S. P. Morphology and electrophysiological properties of immunocytochemically identified rat dopamine neurons recorded in vitro. J Neurosci. 1989 Oct;9(10):3463–3481. doi: 10.1523/JNEUROSCI.09-10-03463.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green A. R., Mitchell B. D., Tordoff A. F., Youdim M. B. Evidence for dopamine deamination by both type A and type B monoamine oxidase in rat brain in vivo and for the degree of inhibition of enzyme necessary for increased functional activity of dopamine and 5-hydroxytryptamine. Br J Pharmacol. 1977 Jul;60(3):343–349. doi: 10.1111/j.1476-5381.1977.tb07506.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hajós M., Greenfield S. A. Topographic heterogeneity of substantia nigra neurons: diversity in intrinsic membrane properties and synaptic inputs. Neuroscience. 1993 Aug;55(4):919–934. doi: 10.1016/0306-4522(93)90308-3. [DOI] [PubMed] [Google Scholar]
- Houslay M. D., Tipton K. F. Multiple forms of monoamine oxidase: fact and artefact. Life Sci. 1976 Aug 15;19(4):467–477. doi: 10.1016/0024-3205(76)90224-1. [DOI] [PubMed] [Google Scholar]
- Hársing L. G., Jr, Vizi E. S. Release of endogenous dopamine from rat isolated striatum: effect of clorgyline and (-)-deprenyl. Br J Pharmacol. 1984 Nov;83(3):741–749. doi: 10.1111/j.1476-5381.1984.tb16228.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Imperato A., Di Chiara G. Trans-striatal dialysis coupled to reverse phase high performance liquid chromatography with electrochemical detection: a new method for the study of the in vivo release of endogenous dopamine and metabolites. J Neurosci. 1984 Apr;4(4):966–977. doi: 10.1523/JNEUROSCI.04-04-00966.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson S. W., Mercuri N. B., North R. A. 5-hydroxytryptamine1B receptors block the GABAB synaptic potential in rat dopamine neurons. J Neurosci. 1992 May;12(5):2000–2006. doi: 10.1523/JNEUROSCI.12-05-02000.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson S. W., North R. A. Two types of neurone in the rat ventral tegmental area and their synaptic inputs. J Physiol. 1992 May;450:455–468. doi: 10.1113/jphysiol.1992.sp019136. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnston J. P. Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem Pharmacol. 1968 Jul;17(7):1285–1297. doi: 10.1016/0006-2952(68)90066-x. [DOI] [PubMed] [Google Scholar]
- Juorio A. V., Paterson I. A., Zhu M. Y. Dopamine metabolism in the guinea pig striatum: role of monoamine oxidase A and B. Eur J Pharmacol. 1994 Mar 21;254(3):213–220. doi: 10.1016/0014-2999(94)90457-x. [DOI] [PubMed] [Google Scholar]
- Kato T., Dong B., Ishii K., Kinemuchi H. Brain dialysis: in vivo metabolism of dopamine and serotonin by monoamine oxidase A but not B in the striatum of unrestrained rats. J Neurochem. 1986 Apr;46(4):1277–1282. doi: 10.1111/j.1471-4159.1986.tb00650.x. [DOI] [PubMed] [Google Scholar]
- Kita T., Kita H., Kitai S. T. Electrical membrane properties of rat substantia nigra compacta neurons in an in vitro slice preparation. Brain Res. 1986 Apr 30;372(1):21–30. doi: 10.1016/0006-8993(86)91454-x. [DOI] [PubMed] [Google Scholar]
- Kito S., Shimoyama M., Arakawa R. Effects of neurotransmitters or drugs on the in vivo release of dopamine and its metabolites. Jpn J Pharmacol. 1986 Jan;40(1):57–67. doi: 10.1254/jjp.40.57. [DOI] [PubMed] [Google Scholar]
- Knoll J., Magyar K. Some puzzling pharmacological effects of monoamine oxidase inhibitors. Adv Biochem Psychopharmacol. 1972;5:393–408. [PubMed] [Google Scholar]
- Lacey M. G., Mercuri N. B., North R. A. Dopamine acts on D2 receptors to increase potassium conductance in neurones of the rat substantia nigra zona compacta. J Physiol. 1987 Nov;392:397–416. doi: 10.1113/jphysiol.1987.sp016787. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lacey M. G., Mercuri N. B., North R. A. On the potassium conductance increase activated by GABAB and dopamine D2 receptors in rat substantia nigra neurones. J Physiol. 1988 Jul;401:437–453. doi: 10.1113/jphysiol.1988.sp017171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lacey M. G., Mercuri N. B., North R. A. Two cell types in rat substantia nigra zona compacta distinguished by membrane properties and the actions of dopamine and opioids. J Neurosci. 1989 Apr;9(4):1233–1241. doi: 10.1523/JNEUROSCI.09-04-01233.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levitt P., Pintar J. E., Breakefield X. O. Immunocytochemical demonstration of monoamine oxidase B in brain astrocytes and serotonergic neurons. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6385–6389. doi: 10.1073/pnas.79.20.6385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Llinás R., Greenfield S. A., Jahnsen H. Electrophysiology of pars compacta cells in the in vitro substantia nigra--a possible mechanism for dendritic release. Brain Res. 1984 Feb 27;294(1):127–132. doi: 10.1016/0006-8993(84)91316-7. [DOI] [PubMed] [Google Scholar]
- Marsden C. A., Broch O. J., Jr, Guldberg H. C. Effect of nigral and raphé lesions on the catechol-O-methyl transferase and monoamine oxidase activities in the rat striatum. Eur J Pharmacol. 1972 Jul;19(1):35–42. doi: 10.1016/0014-2999(72)90074-x. [DOI] [PubMed] [Google Scholar]
- Mercuri N. B., Bonci A., Calabresi P., Stefani A., Bernardi G. Properties of the hyperpolarization-activated cation current Ih in rat midbrain dopaminergic neurons. Eur J Neurosci. 1995 Mar 1;7(3):462–469. doi: 10.1111/j.1460-9568.1995.tb00342.x. [DOI] [PubMed] [Google Scholar]
- Mercuri N. B., Bonci A., Johnson S. W., Stratta F., Calabresi P., Bernardi G. Effects of anoxia on rat midbrain dopamine neurons. J Neurophysiol. 1994 Mar;71(3):1165–1173. doi: 10.1152/jn.1994.71.3.1165. [DOI] [PubMed] [Google Scholar]
- Mercuri N. B., Calabresi P., Bernardi G. Physiology and pharmacology of dopamine D2-receptors: their implications in dopamine-substitute therapy for Parkinson's disease. Neurology. 1989 Aug;39(8):1106–1108. doi: 10.1212/wnl.39.8.1106. [DOI] [PubMed] [Google Scholar]
- Mercuri N. B., Calabresi P., Bernardi G. The electrophysiological actions of dopamine and dopaminergic drugs on neurons of the substantia nigra pars compacta and ventral tegmental area. Life Sci. 1992;51(10):711–718. doi: 10.1016/0024-3205(92)90479-9. [DOI] [PubMed] [Google Scholar]
- Roffler-Tarlov S., Sharman D. F., Tegerdine P. 3,4-dihydroxyphenylacetic acid and 4-hydroxy-3-methoxyphenylacetic acid in the mouse striatum: a reflection of intra- and extra-neuronal metabolism of dopamine? Br J Pharmacol. 1971 Jul;42(3):343–351. doi: 10.1111/j.1476-5381.1971.tb07118.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schoepp D. D., Azzaro A. J. Effects of intrastriatal kainic acid injection on [3H]dopamine metabolism in rat striatal slices: evidence for postsynaptic glial cell metabolism by both the type A and B forms of monoamine oxidase. J Neurochem. 1983 May;40(5):1340–1348. doi: 10.1111/j.1471-4159.1983.tb13576.x. [DOI] [PubMed] [Google Scholar]
- Schoepp D. D., Azzaro A. J. Role of type A and type B monoamine oxidase in the metabolism of released [3H]dopamine from rat striatal slices. Biochem Pharmacol. 1982 Sep 15;31(18):2961–2968. doi: 10.1016/0006-2952(82)90270-2. [DOI] [PubMed] [Google Scholar]
- Westlund K. N., Denney R. M., Kochersperger L. M., Rose R. M., Abell C. W. Distinct monoamine oxidase A and B populations in primate brain. Science. 1985 Oct 11;230(4722):181–183. doi: 10.1126/science.3875898. [DOI] [PubMed] [Google Scholar]
- Wood P. L., Kim H. S., Stocklin K., Rao T. S. Dynamics of the striatal 3-MT pool in rat and mouse: species differences as assessed by steady-state measurements and intracerebral dialysis. Life Sci. 1988;42(22):2275–2281. doi: 10.1016/0024-3205(88)90380-3. [DOI] [PubMed] [Google Scholar]
- Yang H. Y., Neff N. H. The monoamine oxidases of brain: selective inhibition with drugs and the consequences for the metabolism of the biogenic amines. J Pharmacol Exp Ther. 1974 Jun;189(3):733–740. [PubMed] [Google Scholar]
- Yung W. H., Häusser M. A., Jack J. J. Electrophysiology of dopaminergic and non-dopaminergic neurones of the guinea-pig substantia nigra pars compacta in vitro. J Physiol. 1991 May;436:643–667. doi: 10.1113/jphysiol.1991.sp018571. [DOI] [PMC free article] [PubMed] [Google Scholar]
