Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Feb;117(3):507–515. doi: 10.1111/j.1476-5381.1996.tb15219.x

Effects of glibenclamide on the regional haemodynamic actions of alpha-trinositol and its influence on responses to vasodilators in conscious rats.

S M Gardiner 1, P A Kemp 1, J E March 1, B Fallgren 1, T Bennett 1
PMCID: PMC1909315  PMID: 8821541

Abstract

1. In conscious rats, alpha-trinositol (D-myo-inositol-1, 2, 6 triphosphate; 5-80 mg kg-1 h-1 infusion) caused dose-dependent hypotension, tachycardia and hyperaemic dilatation in renal, mesenteric and hindquarters vascular beds. These effects were accompanied by inhibition of the renal vasodilator effects of acetylcholine (ACh), and of the mesenteric vasodilator effects of sodium nitroprusside (SNP) and, particularly, of levcromakalim (LCK). 2. In the light of the latter finding, in a second experiment, we assessed the influence of the KATP channel inhibitor, glibenclamide (20 mg kg-1), on resting haemodynamics, on responses to ACh, bradykinin (BK), SNP and LCK, on the haemodynamic action of alpha-trinositol, and on the effects of the latter on responses to the vasodilators, over a period of 3 days. 3. In the presence of saline, glibenclamide caused a reproducible pressor effect, accompanied by renal, mesenteric, and hindquarters vasoconstrictions on all 3 experimental days; these effects were unrelated to changes in blood glucose. In the presence of glibenclamide, only the hindquarters vasodilator response to BK, and all the cardiovascular actions of LCK were inhibited. 4. On the first experimental day, the hindquarters vasodilator effect of alpha-trinositol was substantially inhibited by glibenclamide, the renal vasodilatation less so, and the mesenteric vasodilatation not at all. However, over the subsequent two days, the mesenteric vasodilator effect of alpha-trinositol became increasingly sensitive to glibenclamide. 5. In the presence of alpha-trinositol and glibenclamide, on the first experimental day, the inhibition of the renal vasodilator effect of ACh was no greater than with alpha-trinositol alone in the first experiment. Moreover, on the third experimental day, both before and after glibenclamide, the inhibition by alpha-trinositol of the renal vasodilator response to ACh was less than on the first experimental day. Similarly, the alpha-trinositol-induced inhibition of the mesenteric vasodilator effect of SNP, and of the hindquarters vasodilator action of BK, waned over the 3 experimental days. The inhibition of the cardiovascular effects of LCK were similar on all 3 experimental days, but no greater in the presence of alpha-trinositol and glibenclamide than with glibenclamide alone. 6. These results indicate that KATP channels are involved in the maintenance of resting vasodilator tone in renal, mesenteric and hindquarters vascular beds. However, although additional activation of KATP channels is responsible for all the haemodynamic effects of LCK, it contributes only to the hindquarters vasodilator action of BK and is not involved in any of the responses to ACh or SNP. The hindquarters, renal and mesenteric vasodilator effects of alpha-trinositol may involve (in the same rank order) activation of KATP channels, probably through an indirect mechanism. However, it is unlikely that direct or indirect interaction of alpha-trinositol with KATP channels explains the ability of the drug to inhibit the renal vasodilator action of ACh, or the mesenteric vasodilator effects of SNP or LCK.

Full text

PDF
507

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamsson M., Edvinsson L. Blockade of neuropeptide Y-induced potentiation of noradrenaline-evoked vasoconstriction by D-myo-inositol-1.2.6-trisphosphate (PP56) in rabbit femoral arteries. Neuropeptides. 1991 May;19(1):13–16. doi: 10.1016/0143-4179(91)90068-t. [DOI] [PubMed] [Google Scholar]
  2. Ahlner J., Andersson R. G., Torfgård K., Axelsson K. L. Organic nitrate esters: clinical use and mechanisms of actions. Pharmacol Rev. 1991 Sep;43(3):351–423. [PubMed] [Google Scholar]
  3. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  4. Carrington A. L., Calcutt N. A., Ettlinger C. B., Gustafsson T., Tomlinson D. R. Effects of treatment with myo-inositol or its 1,2,6-trisphosphate (PP56) on nerve conduction in streptozotocin-diabetes. Eur J Pharmacol. 1993 Jun 24;237(2-3):257–263. doi: 10.1016/0014-2999(93)90277-o. [DOI] [PubMed] [Google Scholar]
  5. Cavero I., Mondot S., Mestre M. Vasorelaxant effects of cromakalim in rats are mediated by glibenclamide-sensitive potassium channels. J Pharmacol Exp Ther. 1989 Mar;248(3):1261–1268. [PubMed] [Google Scholar]
  6. Claxson A., Morris C., Blake D., Sirén M., Halliwell B., Gustafsson T., Löfkvist B., Bergelin I. The anti-inflammatory effects of D-myo-inositol-1.2.6-trisphosphate (PP56) on animal models of inflammation. Agents Actions. 1990 Jan;29(1-2):68–70. doi: 10.1007/BF01964724. [DOI] [PubMed] [Google Scholar]
  7. Fulton D., McGiff J. C., Quilley J. Role of K+ channels in the vasodilator response to bradykinin in the rat heart. Br J Pharmacol. 1994 Nov;113(3):954–958. doi: 10.1111/j.1476-5381.1994.tb17085.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gardiner S. M., Compton A. M., Kemp P. A., Bennett T. Regional and cardiac haemodynamic responses to glyceryl trinitrate, acetylcholine, bradykinin and endothelin-1 in conscious rats: effects of NG-nitro-L-arginine methyl ester. Br J Pharmacol. 1990 Nov;101(3):632–639. doi: 10.1111/j.1476-5381.1990.tb14132.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gardiner S. M., Kemp P. A., Bennett T., Bose C., Foulkes R., Hughes B. Involvement of beta 2-adrenoceptors in the regional haemodynamic responses to bradykinin in conscious rats. Br J Pharmacol. 1992 Apr;105(4):839–848. doi: 10.1111/j.1476-5381.1992.tb09066.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gardiner S. M., Kemp P. A., Bennett T. Effects of NG-nitro-L-arginine methyl ester on vasodilator responses to acetylcholine, 5'-N-ethylcarboxamidoadenosine or salbutamol in conscious rats. Br J Pharmacol. 1991 Jul;103(3):1725–1732. doi: 10.1111/j.1476-5381.1991.tb09854.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gardiner S. M., Kemp P. A., Bennett T. Effects of NG-nitro-L-arginine methyl ester on vasodilator responses to adrenaline or BRL 38227 in conscious rats. Br J Pharmacol. 1991 Nov;104(3):731–737. doi: 10.1111/j.1476-5381.1991.tb12496.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gardiner S. M., Kemp P. A., Bennett T. Effects of chronic treatment with nitric oxide synthase inhibitors on regional haemodynamic responses to vasodilators in conscious Brattleboro rats. Br J Pharmacol. 1993 May;109(1):222–228. doi: 10.1111/j.1476-5381.1993.tb13557.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gardiner S. M., Kemp P. A., Fallgren B., Bennett T. Effects of chronic infusions of alpha-trinositol on regional and cardiac haemodynamics in conscious rats. Br J Pharmacol. 1994 Sep;113(1):129–136. doi: 10.1111/j.1476-5381.1994.tb16184.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jackson W. F. Arteriolar tone is determined by activity of ATP-sensitive potassium channels. Am J Physiol. 1993 Nov;265(5 Pt 2):H1797–H1803. doi: 10.1152/ajpheart.1993.265.5.H1797. [DOI] [PubMed] [Google Scholar]
  15. Lund T., Reed R. K. Alpha-Trinositol inhibits edema generation and albumin extravasation in thermally injured skin. J Trauma. 1994 Jun;36(6):761–765. doi: 10.1097/00005373-199406000-00001. [DOI] [PubMed] [Google Scholar]
  16. McPherson G. A. Current trends in the study of potassium channel openers. Gen Pharmacol. 1993 Mar;24(2):275–281. doi: 10.1016/0306-3623(93)90303-f. [DOI] [PubMed] [Google Scholar]
  17. Moreau R., Komeichi H., Kirstetter P., Yang S., Aupetit-Faisant B., Cailmail S., Lebrec D. Effects of glibenclamide on systemic and splanchnic haemodynamics in conscious rats. Br J Pharmacol. 1994 Jun;112(2):649–653. doi: 10.1111/j.1476-5381.1994.tb13124.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nelson M. T., Quayle J. M. Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol. 1995 Apr;268(4 Pt 1):C799–C822. doi: 10.1152/ajpcell.1995.268.4.C799. [DOI] [PubMed] [Google Scholar]
  19. Quayle J. M., Standen N. B. KATP channels in vascular smooth muscle. Cardiovasc Res. 1994 Jun;28(6):797–804. doi: 10.1093/cvr/28.6.797. [DOI] [PubMed] [Google Scholar]
  20. Randall M. D., McCulloch A. I. The involvement of ATP-sensitive potassium channels in beta-adrenoceptor-mediated vasorelaxation in the rat isolated mesenteric arterial bed. Br J Pharmacol. 1995 Jun;115(4):607–612. doi: 10.1111/j.1476-5381.1995.tb14975.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Revest P. A., Abbott N. J. Membrane ion channels of endothelial cells. Trends Pharmacol Sci. 1992 Nov;13(11):404–407. doi: 10.1016/0165-6147(92)90124-o. [DOI] [PubMed] [Google Scholar]
  22. Rodt S. A., Reed R. K., Ljungström M., Gustafsson T. O., Rubin K. The anti-inflammatory agent alpha-trinositol exerts its edema-preventing effects through modulation of beta 1 integrin function. Circ Res. 1994 Nov;75(5):942–948. doi: 10.1161/01.res.75.5.942. [DOI] [PubMed] [Google Scholar]
  23. Ruf J. C., Ciavatti M., Gustafsson T., Renaud S. Effects of PP-56 and vitamin E on platelet hyperaggregability, fatty acid abnormalities, and clinical manifestations in streptozocin-induced diabetic rats. Diabetes. 1991 Feb;40(2):233–239. doi: 10.2337/diab.40.2.233. [DOI] [PubMed] [Google Scholar]
  24. Schmid-Antomarchi H., De Weille J., Fosset M., Lazdunski M. The receptor for antidiabetic sulfonylureas controls the activity of the ATP-modulated K+ channel in insulin-secreting cells. J Biol Chem. 1987 Nov 25;262(33):15840–15844. [PubMed] [Google Scholar]
  25. Schwieler J. H., Hjemdahl P. D-myo-inositol-1,2,6-triphosphate (PP56) antagonizes nonadrenergic sympathetic vasoconstriction: possible involvement of neuropeptide Y. J Cardiovasc Pharmacol. 1993 Mar;21(3):347–352. doi: 10.1097/00005344-199303000-00001. [DOI] [PubMed] [Google Scholar]
  26. Sun X. Y., Dahlöf C., Edvinsson L., Hedner T. D-myo-inositol-1,2,6-trisphosphate is a selective antagonist of neuropeptide Y-induced pressor responses in the pithed rat. Eur J Pharmacol. 1991 Nov 12;204(3):281–286. doi: 10.1016/0014-2999(91)90853-i. [DOI] [PubMed] [Google Scholar]
  27. Sun X. Y., Edvinsson L., Hedner T. Effects of d-myo-inositol-1,2,6-trisphosphate on neuropeptide Y-induced potentiation of various vasoconstrictor agents in the rat. J Pharmacol Exp Ther. 1992 Jun;261(3):1147–1152. [PubMed] [Google Scholar]
  28. Sun X. Y., Edvinsson L., Hedner T. Neuropeptide Y-induced pressor responses in spontaneously hypertensive and Wistar-Kyoto rats antagonized by D-myo-inositol-1,2,6-triphosphate (PP56). J Hypertens Suppl. 1991 Dec;9(6):S344–S345. [PubMed] [Google Scholar]
  29. Sun X., Edvinsson L., Hedner T. Cardiovascular effects of alpha-trinositol in spontaneously hypertensive and normotensive Wistar-Kyoto rats. J Hypertens. 1993 Sep;11(9):935–943. doi: 10.1097/00004872-199309000-00007. [DOI] [PubMed] [Google Scholar]
  30. Wahlestedt C., Reis D. J., Yoo H., Adamsson M., Andersson D., Edvinsson L. A novel inositol phosphate selectively inhibits vasoconstriction evoked by the sympathetic co-transmitters neuropeptide Y (NPY) and adenosine triphosphate (ATP). Neurosci Lett. 1992 Aug 31;143(1-2):123–126. doi: 10.1016/0304-3940(92)90247-5. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES