Abstract
1. The aim of the present experiment was to characterize nicotine-evoked [3H]-noradrenaline ([3H]-NA) release from rat superfused hippocampal synaptosomes, using striatal [3H]-dopamine release for comparison. 2. (-)-Nicotine, cytisine, DMPP and acetylcholine (ACh) (with esterase inhibitor and muscarinic receptor blocker) increased NA release in a concentration-dependent manner (EC50 6.5 microM, 8.2 microM, 9.3 microM, and 27 microM, respectively) with similar efficacy. 3. Nicotine released striatal dopamine more potently than hippocampal NA (EC50 0.16 microM vs. 6.5 microM). (+)-Anatoxin-a also increased dopamine more potently than NA (EC50 0.05 microM vs. 0.39 microM), and maximal effects were similar to those of nicotine. Isoarecolone (10-320 microM) released dopamine more effectively than NA but a maximal effect was not reached. (-)-Lobeline (10-320 microM) evoked dopamine release, but the effect was large and delayed with respect to nicotine; NA release was not increased but rather depressed at high concentrations of lobeline. High K+ (10 mM) released and NA to similar extents. 4. Addition of the 5-hydroxytryptamine (5-HT) reuptake blocker, citalopram (1 microM) to hippocampal synaptosomes affected neither basal NA release nor nicotine-evoked release. 5. The nicotinic antagonist, mecamylamine (10 microM), virtually abolished NA and dopamine release evoked by high concentrations of nicotine, ACh, cytisine, isoarecolone, and anatoxin-a. Although NA release evoked by DMPP (100 microM) was entirely mecamylamine-sensitive, DMPP-evoked dopamine release was only partially blocked. Dopamine release evoked by lobeline (320 microM) was completely mecamylamine-insensitive. 6. The nicotinic antagonists dihydro-beta-erythroidine and methyllycaconitine inhibited nicotine-evoked dopamine release approximately 30 fold more potently than NA release. In contrast, the antagonist chlorisondamine, displayed a reverse sensitivity, whereas trimetaphan and mecamylamine did not preferentially block either response. None of these antagonists, given at a high concentration, significantly altered release evoked by high K+. 7. Blockade of nicotine-evoked transmitter release by methyllycaconitine and dihydro-beta-erythroidine was surmounted by a high concentration of nicotine (100 microM), but blockade by mecamylamine, chlorisondamine, and trimetaphan was insurmountable. 8. Nicotine-evoked NA release was unaffected by tetrodotoxin, whereas veratridine-evoked NA release was virtually abolished. 9. We conclude that presynaptic nicotinic receptors associated with striatal dopamine and hippocampal NA terminals differ pharmacologically. In situ hybridization studies suggest that nigrostriatal dopaminergic neurones express mainly alpha 4, alpha 5, and beta 2 nicotinic cholinoceptor subunits, whereas hippocampal-projecting noradrenaline (NA) neurones express alpha 3, beta 2 and beta 4 subunits. Pharmacological comparisons of recombinant receptors suggest that release of hippocampal NA may be modulated by receptors containing alpha 3 and beta 4 subunits.
Full text
PDF











Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aizenman E., Tang L. H., Reynolds I. J. Effects of nicotinic agonists on the NMDA receptor. Brain Res. 1991 Jun 14;551(1-2):355–357. doi: 10.1016/0006-8993(91)90958-x. [DOI] [PubMed] [Google Scholar]
- Alkondon M., Albuquerque E. X. Diversity of nicotinic acetylcholine receptors in rat hippocampal neurons. I. Pharmacological and functional evidence for distinct structural subtypes. J Pharmacol Exp Ther. 1993 Jun;265(3):1455–1473. [PubMed] [Google Scholar]
- Alkondon M., Pereira E. F., Wonnacott S., Albuquerque E. X. Blockade of nicotinic currents in hippocampal neurons defines methyllycaconitine as a potent and specific receptor antagonist. Mol Pharmacol. 1992 Apr;41(4):802–808. [PubMed] [Google Scholar]
- Arqueros L., Naquira D., Zunino E. Nicotine-induced release of catecholamines from rat hippocampus and striatum. Biochem Pharmacol. 1978;27(23):2667–2674. doi: 10.1016/0006-2952(78)90040-0. [DOI] [PubMed] [Google Scholar]
- Balfour D. J. Effects of nicotine on the uptake and retention of 14C-noradrenaline and 14C-5-hydroxytryptamine by rat brain homogenates. Eur J Pharmacol. 1973 Jul;23(1):19–26. doi: 10.1016/0014-2999(73)90240-9. [DOI] [PubMed] [Google Scholar]
- Bhat R. V., Turner S. L., Selvaag S. R., Marks M. J., Collins A. C. Regulation of brain nicotinic receptors by chronic agonist infusion. J Neurochem. 1991 Jun;56(6):1932–1939. doi: 10.1111/j.1471-4159.1991.tb03450.x. [DOI] [PubMed] [Google Scholar]
- Buccafusco J. J., Jackson W. J., Gattu M., Terry A. V., Jr Isoarecolone-induced enhancement of delayed matching to sample performance in monkeys: role of nicotinic receptors. Neuroreport. 1995 May 30;6(8):1223–1227. doi: 10.1097/00001756-199505300-00037. [DOI] [PubMed] [Google Scholar]
- Cachelin A. B., Jaggi R. Beta subunits determine the time course of desensitization in rat alpha 3 neuronal nicotinic acetylcholine receptors. Pflugers Arch. 1991 Dec;419(6):579–582. doi: 10.1007/BF00370298. [DOI] [PubMed] [Google Scholar]
- Cachelin A. B., Rust G. Beta-subunits co-determine the sensitivity of rat neuronal nicotinic receptors to antagonists. Pflugers Arch. 1995 Jan;429(3):449–451. doi: 10.1007/BF00374164. [DOI] [PubMed] [Google Scholar]
- Cachelin A. B., Rust G. Unusual pharmacology of (+)-tubocurarine with rat neuronal nicotinic acetylcholine receptors containing beta 4 subunits. Mol Pharmacol. 1994 Dec;46(6):1168–1174. [PubMed] [Google Scholar]
- Caulfield M. P., Higgins G. A. Mediation of nicotine-induced convulsions by central nicotinic receptors of the 'C6' type. Neuropharmacology. 1983 Mar;22(3):347–351. doi: 10.1016/0028-3908(83)90251-4. [DOI] [PubMed] [Google Scholar]
- Clarke P. B., Chaudieu I., el-Bizri H., Boksa P., Quik M., Esplin B. A., Capek R. The pharmacology of the nicotinic antagonist, chlorisondamine, investigated in rat brain and autonomic ganglion. Br J Pharmacol. 1994 Feb;111(2):397–405. doi: 10.1111/j.1476-5381.1994.tb14748.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clarke P. B., Pert A. Autoradiographic evidence for nicotine receptors on nigrostriatal and mesolimbic dopaminergic neurons. Brain Res. 1985 Dec 2;348(2):355–358. doi: 10.1016/0006-8993(85)90456-1. [DOI] [PubMed] [Google Scholar]
- Clarke P. B., Reuben M. Inhibition by dizocilpine (MK-801) of striatal dopamine release induced by MPTP and MPP+: possible action at the dopamine transporter. Br J Pharmacol. 1995 Jan;114(2):315–322. doi: 10.1111/j.1476-5381.1995.tb13229.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clarke P. B., Reuben M., el-Bizri H. Blockade of nicotinic responses by physostigmine, tacrine and other cholinesterase inhibitors in rat striatum. Br J Pharmacol. 1994 Mar;111(3):695–702. doi: 10.1111/j.1476-5381.1994.tb14793.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Collins A. C., Evans C. B., Miner L. L., Marks M. J. Mecamylamine blockade of nicotine responses: evidence for two brain nicotinic receptors. Pharmacol Biochem Behav. 1986 Jun;24(6):1767–1773. doi: 10.1016/0091-3057(86)90518-6. [DOI] [PubMed] [Google Scholar]
- Connolly J., Boulter J., Heinemann S. F. Alpha 4-2 beta 2 and other nicotinic acetylcholine receptor subtypes as targets of psychoactive and addictive drugs. Br J Pharmacol. 1992 Mar;105(3):657–666. doi: 10.1111/j.1476-5381.1992.tb09035.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Conroy W. G., Berg D. K. Neurons can maintain multiple classes of nicotinic acetylcholine receptors distinguished by different subunit compositions. J Biol Chem. 1995 Mar 3;270(9):4424–4431. doi: 10.1074/jbc.270.9.4424. [DOI] [PubMed] [Google Scholar]
- Court J. A., Perry E. K., Spurden D., Lloyd S., Gillespie J. I., Whiting P., Barlow R. Comparison of the binding of nicotinic agonists to receptors from human and rat cerebral cortex and from chick brain (alpha 4 beta 2) transfected into mouse fibroblasts with ion channel activity. Brain Res. 1994 Dec 19;667(1):118–122. doi: 10.1016/0006-8993(94)91721-3. [DOI] [PubMed] [Google Scholar]
- Covernton P. J., Kojima H., Sivilotti L. G., Gibb A. J., Colquhoun D. Comparison of neuronal nicotinic receptors in rat sympathetic neurones with subunit pairs expressed in Xenopus oocytes. J Physiol. 1994 Nov 15;481(Pt 1):27–34. doi: 10.1113/jphysiol.1994.sp020416. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dar M. S., Li C., Bowman E. R. Central behavioral interactions between ethanol, (-)-nicotine, and (-)-cotinine in mice. Brain Res Bull. 1993;32(1):23–28. doi: 10.1016/0361-9230(93)90314-2. [DOI] [PubMed] [Google Scholar]
- Dineley-Miller K., Patrick J. Gene transcripts for the nicotinic acetylcholine receptor subunit, beta4, are distributed in multiple areas of the rat central nervous system. Brain Res Mol Brain Res. 1992 Dec;16(3-4):339–344. doi: 10.1016/0169-328x(92)90244-6. [DOI] [PubMed] [Google Scholar]
- Flores C. M., Rogers S. W., Pabreza L. A., Wolfe B. B., Kellar K. J. A subtype of nicotinic cholinergic receptor in rat brain is composed of alpha 4 and beta 2 subunits and is up-regulated by chronic nicotine treatment. Mol Pharmacol. 1992 Jan;41(1):31–37. [PubMed] [Google Scholar]
- Fudala P. J., Iwamoto E. T. Further studies on nicotine-induced conditioned place preference in the rat. Pharmacol Biochem Behav. 1986 Nov;25(5):1041–1049. doi: 10.1016/0091-3057(86)90083-3. [DOI] [PubMed] [Google Scholar]
- Grady S. R., Marks M. J., Collins A. C. Desensitization of nicotine-stimulated [3H]dopamine release from mouse striatal synaptosomes. J Neurochem. 1994 Apr;62(4):1390–1398. doi: 10.1046/j.1471-4159.1994.62041390.x. [DOI] [PubMed] [Google Scholar]
- Grady S., Marks M. J., Wonnacott S., Collins A. C. Characterization of nicotinic receptor-mediated [3H]dopamine release from synaptosomes prepared from mouse striatum. J Neurochem. 1992 Sep;59(3):848–856. doi: 10.1111/j.1471-4159.1992.tb08322.x. [DOI] [PubMed] [Google Scholar]
- Holbach H. J., Lindmar R., Löffelholz K. DMPP and the adrenergic nerve terminal: mechanisms of noradrenaline release from vesicular and extravesicular compartments. Naunyn Schmiedebergs Arch Pharmacol. 1977 Nov;300(2):131–138. doi: 10.1007/BF00505043. [DOI] [PubMed] [Google Scholar]
- Hyttel J. Pharmacological characterization of selective serotonin reuptake inhibitors (SSRIs). Int Clin Psychopharmacol. 1994 Mar;9 (Suppl 1):19–26. doi: 10.1097/00004850-199403001-00004. [DOI] [PubMed] [Google Scholar]
- Izenwasser S., Jacocks H. M., Rosenberger J. G., Cox B. M. Nicotine indirectly inhibits [3H]dopamine uptake at concentrations that do not directly promote [3H]dopamine release in rat striatum. J Neurochem. 1991 Feb;56(2):603–610. doi: 10.1111/j.1471-4159.1991.tb08192.x. [DOI] [PubMed] [Google Scholar]
- Khan I. M., Taylor P., Yaksh T. L. Cardiovascular and behavioral responses to nicotinic agents administered intrathecally. J Pharmacol Exp Ther. 1994 Jul;270(1):150–158. [PubMed] [Google Scholar]
- Loiacono R., Stephenson J., Stevenson J., Mitchelson F. Multiple binding sites for nicotine receptor antagonists in inhibiting [3H](-)-nicotine binding in rat cortex. Neuropharmacology. 1993 Sep;32(9):847–853. doi: 10.1016/0028-3908(93)90139-t. [DOI] [PubMed] [Google Scholar]
- Luetje C. W., Patrick J. Both alpha- and beta-subunits contribute to the agonist sensitivity of neuronal nicotinic acetylcholine receptors. J Neurosci. 1991 Mar;11(3):837–845. doi: 10.1523/JNEUROSCI.11-03-00837.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luetje C. W., Piattoni M., Patrick J. Mapping of ligand binding sites of neuronal nicotinic acetylcholine receptors using chimeric alpha subunits. Mol Pharmacol. 1993 Sep;44(3):657–666. [PubMed] [Google Scholar]
- Luetje C. W., Wada K., Rogers S., Abramson S. N., Tsuji K., Heinemann S., Patrick J. Neurotoxins distinguish between different neuronal nicotinic acetylcholine receptor subunit combinations. J Neurochem. 1990 Aug;55(2):632–640. doi: 10.1111/j.1471-4159.1990.tb04180.x. [DOI] [PubMed] [Google Scholar]
- Mandelzys A., Pié B., Deneris E. S., Cooper E. The developmental increase in ACh current densities on rat sympathetic neurons correlates with changes in nicotinic ACh receptor alpha-subunit gene expression and occurs independent of innervation. J Neurosci. 1994 Apr;14(4):2357–2364. doi: 10.1523/JNEUROSCI.14-04-02357.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marks M. J., Collins A. C. Characterization of nicotine binding in mouse brain and comparison with the binding of alpha-bungarotoxin and quinuclidinyl benzilate. Mol Pharmacol. 1982 Nov;22(3):554–564. [PubMed] [Google Scholar]
- Marks M. J., Farnham D. A., Grady S. R., Collins A. C. Nicotinic receptor function determined by stimulation of rubidium efflux from mouse brain synaptosomes. J Pharmacol Exp Ther. 1993 Feb;264(2):542–552. [PubMed] [Google Scholar]
- Mitchell S. N. Role of the locus coeruleus in the noradrenergic response to a systemic administration of nicotine. Neuropharmacology. 1993 Oct;32(10):937–949. doi: 10.1016/0028-3908(93)90058-b. [DOI] [PubMed] [Google Scholar]
- Mulle C., Vidal C., Benoit P., Changeux J. P. Existence of different subtypes of nicotinic acetylcholine receptors in the rat habenulo-interpeduncular system. J Neurosci. 1991 Aug;11(8):2588–2597. doi: 10.1523/JNEUROSCI.11-08-02588.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olney J. W., Price M. T., Labruyere J., Salles K. S., Frierdich G., Mueller M., Silverman E. Anti-parkinsonian agents are phencyclidine agonists and N-methyl-aspartate antagonists. Eur J Pharmacol. 1987 Oct 13;142(2):319–320. doi: 10.1016/0014-2999(87)90123-3. [DOI] [PubMed] [Google Scholar]
- Papke R. L., Duvoisin R. M., Heinemann S. F. The amino terminal half of the nicotinic beta-subunit extracellular domain regulates the kinetics of inhibition by neuronal bungarotoxin. Proc Biol Sci. 1993 May 22;252(1334):141–148. doi: 10.1098/rspb.1993.0058. [DOI] [PubMed] [Google Scholar]
- Papke R. L., Heinemann S. F. Partial agonist properties of cytisine on neuronal nicotinic receptors containing the beta 2 subunit. Mol Pharmacol. 1994 Jan;45(1):142–149. [PubMed] [Google Scholar]
- Papke R. L. The kinetic properties of neuronal nicotinic receptors: genetic basis of functional diversity. Prog Neurobiol. 1993 Oct;41(4):509–531. doi: 10.1016/0301-0082(93)90028-q. [DOI] [PubMed] [Google Scholar]
- Pittaluga A., Raiteri M. N-methyl-D-aspartic acid (NMDA) and non-NMDA receptors regulating hippocampal norepinephrine release. I. Location on axon terminals and pharmacological characterization. J Pharmacol Exp Ther. 1992 Jan;260(1):232–237. [PubMed] [Google Scholar]
- Rapier C., Lunt G. G., Wonnacott S. Nicotinic modulation of [3H]dopamine release from striatal synaptosomes: pharmacological characterisation. J Neurochem. 1990 Mar;54(3):937–945. doi: 10.1111/j.1471-4159.1990.tb02341.x. [DOI] [PubMed] [Google Scholar]
- Rapier C., Lunt G. G., Wonnacott S. Stereoselective nicotine-induced release of dopamine from striatal synaptosomes: concentration dependence and repetitive stimulation. J Neurochem. 1988 Apr;50(4):1123–1130. doi: 10.1111/j.1471-4159.1988.tb10582.x. [DOI] [PubMed] [Google Scholar]
- Reavill C., Spivak C. E., Stolerman I. P., Waters J. A. Isoarecolone can inhibit nicotine binding and produce nicotine-like discriminative stimulus effects in rats. Neuropharmacology. 1987 Jul;26(7A):789–792. doi: 10.1016/0028-3908(87)90244-9. [DOI] [PubMed] [Google Scholar]
- Reavill C., Walther B., Stolerman I. P., Testa B. Behavioural and pharmacokinetic studies on nicotine, cytisine and lobeline. Neuropharmacology. 1990 Jul;29(7):619–624. doi: 10.1016/0028-3908(90)90022-j. [DOI] [PubMed] [Google Scholar]
- Reavill C., Waters J. A., Stolerman I. P., Garcha H. S. Behavioural effects of the nicotinic agonists N-(3-pyridylmethyl)pyrrolidine and isoarecolone in rats. Psychopharmacology (Berl) 1990;102(4):521–528. doi: 10.1007/BF02247135. [DOI] [PubMed] [Google Scholar]
- Romano C., Goldstein A., Jewell N. P. Characterization of the receptor mediating the nicotine discriminative stimulus. Psychopharmacology (Berl) 1981;74(4):310–315. doi: 10.1007/BF00432737. [DOI] [PubMed] [Google Scholar]
- Romano C. Nicotine action on rat colon. J Pharmacol Exp Ther. 1981 Jun;217(3):828–833. [PubMed] [Google Scholar]
- Rowell P. P., Hillebrand J. A. Characterization of nicotine-induced desensitization of evoked dopamine release from rat striatal synaptosomes. J Neurochem. 1994 Aug;63(2):561–569. doi: 10.1046/j.1471-4159.1994.63020561.x. [DOI] [PubMed] [Google Scholar]
- Rowell P. P., Wonnacott S. Evidence for functional activity of up-regulated nicotine binding sites in rat striatal synaptosomes. J Neurochem. 1990 Dec;55(6):2105–2110. doi: 10.1111/j.1471-4159.1990.tb05802.x. [DOI] [PubMed] [Google Scholar]
- Rust G., Burgunder J. M., Lauterburg T. E., Cachelin A. B. Expression of neuronal nicotinic acetylcholine receptor subunit genes in the rat autonomic nervous system. Eur J Neurosci. 1994 Mar 1;6(3):478–485. doi: 10.1111/j.1460-9568.1994.tb00290.x. [DOI] [PubMed] [Google Scholar]
- Sacaan A. I., Dunlop J. L., Lloyd G. K. Pharmacological characterization of neuronal acetylcholine gated ion channel receptor-mediated hippocampal norepinephrine and striatal dopamine release from rat brain slices. J Pharmacol Exp Ther. 1995 Jul;274(1):224–230. [PubMed] [Google Scholar]
- Sakurai Y., Takano Y., Kohjimoto Y., Honda K., Kamiya H. O. Enhancement of [3H]dopamine release and its [3H]metabolites in rat striatum by nicotinic drugs. Brain Res. 1982 Jun 17;242(1):99–106. doi: 10.1016/0006-8993(82)90499-1. [DOI] [PubMed] [Google Scholar]
- Schmidt J. Drug binding properties of an alpha-bungarotoxin-binding component from rat brain. Mol Pharmacol. 1977 Mar;13(2):283–290. [PubMed] [Google Scholar]
- Schulz D. W., Zigmond R. E. Neuronal bungarotoxin blocks the nicotinic stimulation of endogenous dopamine release from rat striatum. Neurosci Lett. 1989 Apr 10;98(3):310–316. doi: 10.1016/0304-3940(89)90420-5. [DOI] [PubMed] [Google Scholar]
- Schwartz R. D., Kellar K. J. [3H]acetylcholine binding sites in brain. Effect of disulfide bond modification. Mol Pharmacol. 1983 Nov;24(3):387–391. [PubMed] [Google Scholar]
- Schwartz R. D., Lehmann J., Kellar K. J. Presynaptic nicotinic cholinergic receptors labeled by [3H]acetylcholine on catecholamine and serotonin axons in brain. J Neurochem. 1984 May;42(5):1495–1498. doi: 10.1111/j.1471-4159.1984.tb02818.x. [DOI] [PubMed] [Google Scholar]
- Snell L. D., Johnson K. M. Effects of nicotinic agonists and antagonists on N-methyl-D-aspartate-induced 3H-norepinephrine release and 3H-(1-[1-(2-thienyl)cyclohexyl]-piperidine) binding in rat hippocampus. Synapse. 1989;3(2):129–135. doi: 10.1002/syn.890030204. [DOI] [PubMed] [Google Scholar]
- Stolerman I. P., Albuquerque E. X., Garcha H. S. Behavioural effects of anatoxin, a potent nicotinic agonist, in rats. Neuropharmacology. 1992 Mar;31(3):311–314. doi: 10.1016/0028-3908(92)90182-o. [DOI] [PubMed] [Google Scholar]
- Stolerman I. P., Garcha H. S., Mirza N. R. Dissociations between the locomotor stimulant and depressant effects of nicotinic agonists in rats. Psychopharmacology (Berl) 1995 Feb;117(4):430–437. doi: 10.1007/BF02246215. [DOI] [PubMed] [Google Scholar]
- Swanson K. L., Aronstam R. S., Wonnacott S., Rapoport H., Albuquerque E. X. Nicotinic pharmacology of anatoxin analogs. I. Side chain structure-activity relationships at peripheral agonist and noncompetitive antagonist sites. J Pharmacol Exp Ther. 1991 Oct;259(1):377–386. [PubMed] [Google Scholar]
- Séguéla P., Wadiche J., Dineley-Miller K., Dani J. A., Patrick J. W. Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium. J Neurosci. 1993 Feb;13(2):596–604. doi: 10.1523/JNEUROSCI.13-02-00596.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas P., Stephens M., Wilkie G., Amar M., Lunt G. G., Whiting P., Gallagher T., Pereira E., Alkondon M., Albuquerque E. X. (+)-Anatoxin-a is a potent agonist at neuronal nicotinic acetylcholine receptors. J Neurochem. 1993 Jun;60(6):2308–2311. doi: 10.1111/j.1471-4159.1993.tb03519.x. [DOI] [PubMed] [Google Scholar]
- Vernallis A. B., Conroy W. G., Berg D. K. Neurons assemble acetylcholine receptors with as many as three kinds of subunits while maintaining subunit segregation among receptor subtypes. Neuron. 1993 Mar;10(3):451–464. doi: 10.1016/0896-6273(93)90333-m. [DOI] [PubMed] [Google Scholar]
- Vidal C., Changeux J. P. Nicotinic and muscarinic modulations of excitatory synaptic transmission in the rat prefrontal cortex in vitro. Neuroscience. 1993 Sep;56(1):23–32. doi: 10.1016/0306-4522(93)90558-w. [DOI] [PubMed] [Google Scholar]
- Wada E., McKinnon D., Heinemann S., Patrick J., Swanson L. W. The distribution of mRNA encoded by a new member of the neuronal nicotinic acetylcholine receptor gene family (alpha 5) in the rat central nervous system. Brain Res. 1990 Aug 27;526(1):45–53. doi: 10.1016/0006-8993(90)90248-a. [DOI] [PubMed] [Google Scholar]
- Wada E., Wada K., Boulter J., Deneris E., Heinemann S., Patrick J., Swanson L. W. Distribution of alpha 2, alpha 3, alpha 4, and beta 2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridization histochemical study in the rat. J Comp Neurol. 1989 Jun 8;284(2):314–335. doi: 10.1002/cne.902840212. [DOI] [PubMed] [Google Scholar]
- Ward J. M., Cockcroft V. B., Lunt G. G., Smillie F. S., Wonnacott S. Methyllycaconitine: a selective probe for neuronal alpha-bungarotoxin binding sites. FEBS Lett. 1990 Sep 17;270(1-2):45–48. doi: 10.1016/0014-5793(90)81231-c. [DOI] [PubMed] [Google Scholar]
- Weaver W. R., Wolf K. M., Chiappinelli V. A. Functional heterogeneity of nicotinic receptors in the avian lateral spiriform nucleus detected with trimethaphan. Mol Pharmacol. 1994 Nov;46(5):993–1001. [PubMed] [Google Scholar]
- Whiting P. J., Lindstrom J. M. Characterization of bovine and human neuronal nicotinic acetylcholine receptors using monoclonal antibodies. J Neurosci. 1988 Sep;8(9):3395–3404. doi: 10.1523/JNEUROSCI.08-09-03395.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams M., Robinson J. L. Binding of the nicotinic cholinergic antagonist, dihydro-beta-erythroidine, to rat brain tissue. J Neurosci. 1984 Dec;4(12):2906–2911. doi: 10.1523/JNEUROSCI.04-12-02906.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wong E. T., Holstad S. G., Mennerick S. J., Hong S. E., Zorumski C. F., Isenberg K. E. Pharmacological and physiological properties of a putative ganglionic nicotinic receptor, alpha 3 beta 4, expressed in transfected eucaryotic cells. Brain Res Mol Brain Res. 1995 Jan;28(1):101–109. doi: 10.1016/0169-328x(94)00189-l. [DOI] [PubMed] [Google Scholar]
- Wonnacott S., Jackman S., Swanson K. L., Rapoport H., Albuquerque E. X. Nicotinic pharmacology of anatoxin analogs. II. Side chain structure-activity relationships at neuronal nicotinic ligand binding sites. J Pharmacol Exp Ther. 1991 Oct;259(1):387–391. [PubMed] [Google Scholar]
- Zoli M., Le Novère N., Hill J. A., Jr, Changeux J. P. Developmental regulation of nicotinic ACh receptor subunit mRNAs in the rat central and peripheral nervous systems. J Neurosci. 1995 Mar;15(3 Pt 1):1912–1939. doi: 10.1523/JNEUROSCI.15-03-01912.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- el-Bizri H., Clarke P. B. Blockade of nicotinic receptor-mediated release of dopamine from striatal synaptosomes by chlorisondamine and other nicotinic antagonists administered in vitro. Br J Pharmacol. 1994 Feb;111(2):406–413. doi: 10.1111/j.1476-5381.1994.tb14749.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
