Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Dec;70(12):8438–8443. doi: 10.1128/jvi.70.12.8438-8443.1996

A single amino acid change in the glycoprotein of lymphocytic choriomeningitis virus is associated with the ability to cause growth hormone deficiency syndrome.

M N Teng 1, P Borrow 1, M B Oldstone 1, J C de la Torre 1
PMCID: PMC190933  PMID: 8970965

Abstract

Persistent infection of C3H/St mice with certain strains of lymphocytic choriomeningitis virus (LCMV) causes a growth hormone (GH) deficiency syndrome (GHDS) manifested as growth retardation and hypoglycemia. Infected mice show high levels of viral replication in the GH-producing cells in the anterior pituitary leading to decreased synthesis of GH mRNA and protein despite the absence of detectable virus-induced cell structural damage. Virus clones isolated from the GHDS-negative LCMV WE strain can cause the disease, while others cannot. The genetic basis of this phenotypic difference is a nucleotide substitution resulting in a single amino acid difference in the viral glycoprotein. Reassortant studies indicate that the single amino acid substitution (Ser-153 to Phe) is sufficient to allow infection of the GH-producing cells and cause GHDS. These results show that a single change in the genome can affect viral pathogenicity by altering the tropism of the virus.

Full Text

The Full Text of this article is available as a PDF (372.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bae Y. S., Yoon J. W. Determination of diabetogenicity attributable to a single amino acid, Ala776, on the polyprotein of encephalomyocarditis virus. Diabetes. 1993 Mar;42(3):435–443. doi: 10.2337/diab.42.3.435. [DOI] [PubMed] [Google Scholar]
  2. Borrow P., Evans C. F., Oldstone M. B. Virus-induced immunosuppression: immune system-mediated destruction of virus-infected dendritic cells results in generalized immune suppression. J Virol. 1995 Feb;69(2):1059–1070. doi: 10.1128/jvi.69.2.1059-1070.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Borrow P., Oldstone M. B. Characterization of lymphocytic choriomeningitis virus-binding protein(s): a candidate cellular receptor for the virus. J Virol. 1992 Dec;66(12):7270–7281. doi: 10.1128/jvi.66.12.7270-7281.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Buchmeier M. J., Lewicki H. A., Tomori O., Oldstone M. B. Monoclonal antibodies to lymphocytic choriomeningitis and pichinde viruses: generation, characterization, and cross-reactivity with other arenaviruses. Virology. 1981 Aug;113(1):73–85. doi: 10.1016/0042-6822(81)90137-9. [DOI] [PubMed] [Google Scholar]
  6. Buesa-Gomez J., Teng M. N., Oldstone C. E., Oldstone M. B., de la Torre J. C. Variants able to cause growth hormone deficiency syndrome are present within the disease-nil WE strain of lymphocytic choriomeningitis virus. J Virol. 1996 Dec;70(12):8988–8992. doi: 10.1128/jvi.70.12.8988-8992.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dietzschold B., Wunner W. H., Wiktor T. J., Lopes A. D., Lafon M., Smith C. L., Koprowski H. Characterization of an antigenic determinant of the glycoprotein that correlates with pathogenicity of rabies virus. Proc Natl Acad Sci U S A. 1983 Jan;80(1):70–74. doi: 10.1073/pnas.80.1.70. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gorman O. T., Bean W. J., Webster R. G. Evolutionary processes in influenza viruses: divergence, rapid evolution, and stasis. Curr Top Microbiol Immunol. 1992;176:75–97. doi: 10.1007/978-3-642-77011-1_6. [DOI] [PubMed] [Google Scholar]
  9. Klavinskis L. S., Oldstone M. B. Lymphocytic choriomeningitis virus selectively alters differentiated but not housekeeping functions: block in expression of growth hormone gene is at the level of transcriptional initiation. Virology. 1989 Feb;168(2):232–235. doi: 10.1016/0042-6822(89)90262-6. [DOI] [PubMed] [Google Scholar]
  10. Kristensson K., Norrby E. Persistence of RNA viruses in the central nervous system. Annu Rev Microbiol. 1986;40:159–184. doi: 10.1146/annurev.mi.40.100186.001111. [DOI] [PubMed] [Google Scholar]
  11. Mandl C. W., Heinz F. X., Puchhammer-Stöckl E., Kunz C. Sequencing the termini of capped viral RNA by 5'-3' ligation and PCR. Biotechniques. 1991 Apr;10(4):484–486. [PubMed] [Google Scholar]
  12. Mohammed A. H., Norrby E., Kristensson K. Viruses and behavioural changes: a review of clinical and experimental findings. Rev Neurosci. 1993 Jul-Sep;4(3):267–286. doi: 10.1515/revneuro.1993.4.3.267. [DOI] [PubMed] [Google Scholar]
  13. Oldstone M. B., Ahmed R., Buchmeier M. J., Blount P., Tishon A. Perturbation of differentiated functions during viral infection in vivo. I. Relationship of lymphocytic choriomeningitis virus and host strains to growth hormone deficiency. Virology. 1985 Apr 15;142(1):158–174. doi: 10.1016/0042-6822(85)90430-1. [DOI] [PubMed] [Google Scholar]
  14. Oldstone M. B., Rodriguez M., Daughaday W. H., Lampert P. W. Viral perturbation of endocrine function: disordered cell function leads to disturbed homeostasis and disease. Nature. 1984 Jan 19;307(5948):278–281. doi: 10.1038/307278a0. [DOI] [PubMed] [Google Scholar]
  15. Oldstone M. B., Sinha Y. N., Blount P., Tishon A., Rodriguez M., von Wedel R., Lampert P. W. Virus-induced alterations in homeostasis: alteration in differentiated functions of infected cells in vivo. Science. 1982 Dec 10;218(4577):1125–1127. doi: 10.1126/science.7146898. [DOI] [PubMed] [Google Scholar]
  16. Oldstone M. B. Viruses can cause disease in the absence of morphological evidence of cell injury: implication for uncovering new diseases in the future. J Infect Dis. 1989 Mar;159(3):384–389. doi: 10.1093/infdis/159.3.384. [DOI] [PubMed] [Google Scholar]
  17. Pringle C. R., Lees J. F., Clark W., Elliott R. M. Genome subunit reassortment among Bunyaviruses analysed by dot hybridization using molecularly cloned complementary DNA probes. Virology. 1984 May;135(1):244–256. doi: 10.1016/0042-6822(84)90134-x. [DOI] [PubMed] [Google Scholar]
  18. Riviere Y., Ahmed R., Southern P., Oldstone M. B. Perturbation of differentiated functions during viral infection in vivo. II. Viral reassortants map growth hormone defect to the S RNA of the lymphocytic choriomeningitis virus genome. Virology. 1985 Apr 15;142(1):175–182. doi: 10.1016/0042-6822(85)90431-3. [DOI] [PubMed] [Google Scholar]
  19. Salvato M., Borrow P., Shimomaye E., Oldstone M. B. Molecular basis of viral persistence: a single amino acid change in the glycoprotein of lymphocytic choriomeningitis virus is associated with suppression of the antiviral cytotoxic T-lymphocyte response and establishment of persistence. J Virol. 1991 Apr;65(4):1863–1869. doi: 10.1128/jvi.65.4.1863-1869.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sitbon M., d'Auriol L., Ellerbrok H., André C., Nishio J., Perryman S., Pozo F., Hayes S. F., Wehrly K., Tambourin P. Substitution of leucine for isoleucine in a sequence highly conserved among retroviral envelope surface glycoproteins attenuates the lytic effect of the Friend murine leukemia virus. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5932–5936. doi: 10.1073/pnas.88.13.5932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Szepanski S., Gross H. J., Brossmer R., Klenk H. D., Herrler G. A single point mutation of the influenza C virus glycoprotein (HEF) changes the viral receptor-binding activity. Virology. 1992 May;188(1):85–92. doi: 10.1016/0042-6822(92)90737-A. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tishon A., Oldstone M. B. Perturbation of differentiated functions during viral infection in vivo. In vivo relationship of host genes and lymphocytic choriomeningitis virus to growth hormone deficiency. Am J Pathol. 1990 Oct;137(4):965–969. [PMC free article] [PubMed] [Google Scholar]
  23. Turell M. J., Saluzzo J. F., Tammariello R. F., Smith J. F. Generation and transmission of Rift Valley fever viral reassortants by the mosquito Culex pipiens. J Gen Virol. 1990 Oct;71(Pt 10):2307–2312. doi: 10.1099/0022-1317-71-10-2307. [DOI] [PubMed] [Google Scholar]
  24. Urquidi V., Bishop D. H. Non-random reassortment between the tripartite RNA genomes of La Crosse and snowshoe hare viruses. J Gen Virol. 1992 Sep;73(Pt 9):2255–2265. doi: 10.1099/0022-1317-73-9-2255. [DOI] [PubMed] [Google Scholar]
  25. Valsamakis A., Riviere Y., Oldstone M. B. Perturbation of differentiated functions in vivo during persistent viral infection. III. Decreased growth hormone mRNA. Virology. 1987 Feb;156(2):214–220. doi: 10.1016/0042-6822(87)90400-4. [DOI] [PubMed] [Google Scholar]
  26. de la Torre J. C., Oldstone M. B. Selective disruption of growth hormone transcription machinery by viral infection. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9939–9943. doi: 10.1073/pnas.89.20.9939. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES