Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Feb;117(4):667–674. doi: 10.1111/j.1476-5381.1996.tb15242.x

Augmentation by eosinophils of gelatinase activity in the airway mucosa: comparative effects as a putative mediator of epithelial injury.

C A Herbert 1, M J Arthur 1, C Robinson 1
PMCID: PMC1909334  PMID: 8646412

Abstract

1. We have studied the release of gelatin-degrading enzymes from isolated sheets of bronchial mucosa in the presence and absence of eosinophils. 2. Isolated sheets of bovine bronchial mucosa released gelatin-degrading activity in similar amounts from both the apical and basolateral aspects of the tissue. Gelatinolytic activity could not be increased by treatment of the mucosal sheets with calcium ionophore, A23187. 3. The activity of the released gelatinases could be inhibited by chelation of divalent cations or by the matrix metalloproteinase inhibitors, BB-94 and BB-250. However, inhibitors of serine proteinases, or of cysteine proteinases were without effect. In zymography, major bands of gelatin-degrading activity consistent with gelatinases A and B were identified. 4. Addition of guinea-pig eosinophils to the basolateral aspect of bronchial mucosa for 60 min resulted in an increase in the gelatinolytic activity of the conditioned medium, irrespective of whether the eosinophils were stimulated with ionophore A23187 or not. However, only ionophore-stimulated eosinophils reacted to produce sufficient tissue damage to increase the transepithelial flux of serum albumin. 5. Purified eosinophils were a poor source of gelatinolytic activity, indicating that when interacting with the bronchial mucosa their effect is to increase the apparent release and/or activation of gelatinases derived from the airway mucosa. 6. After organomercurial activation, recombinant human progelatinase A increased the permeability of the bronchial mucosa to mannitol. However, the activity of enzyme and duration of exposure required to do this were greater than the amounts of gelatinase activity detected during eosinophil-mediated injury. Sheets of airway mucosa were also resistant to injury evoked by high concentrations of hydrogen peroxide or plasmin. 7. Collectively, these results suggest that if gelatinases are involved in eosinophil-mediated injury and repair of the bronchial mucosa, they require other mediators to act in concert to bring about outright epithelial cell detachment. This does not preclude the possibility that gelatinases are crucial in rendering the airway mucosa hyperfragile.

Full text

PDF
667

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agren M. S. Gelatinase activity during wound healing. Br J Dermatol. 1994 Nov;131(5):634–640. doi: 10.1111/j.1365-2133.1994.tb04974.x. [DOI] [PubMed] [Google Scholar]
  2. Beasley R., Roche W. R., Roberts J. A., Holgate S. T. Cellular events in the bronchi in mild asthma and after bronchial provocation. Am Rev Respir Dis. 1989 Mar;139(3):806–817. doi: 10.1164/ajrccm/139.3.806. [DOI] [PubMed] [Google Scholar]
  3. Boucher R. C. Chemical modulation of airway epithelial permeability. Environ Health Perspect. 1980 Apr;35:3–11. doi: 10.1289/ehp.80353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carroll N., Elliot J., Morton A., James A. The structure of large and small airways in nonfatal and fatal asthma. Am Rev Respir Dis. 1993 Feb;147(2):405–410. doi: 10.1164/ajrccm/147.2.405. [DOI] [PubMed] [Google Scholar]
  5. Cawston T. E., Barrett A. J. A rapid and reproducible assay for collagenase using [1-14C]acetylated collagen. Anal Biochem. 1979 Nov 1;99(2):340–345. doi: 10.1016/s0003-2697(79)80017-2. [DOI] [PubMed] [Google Scholar]
  6. Crabbe T., O'Connell J. P., Smith B. J., Docherty A. J. Reciprocated matrix metalloproteinase activation: a process performed by interstitial collagenase and progelatinase A. Biochemistry. 1994 Dec 6;33(48):14419–14425. doi: 10.1021/bi00252a007. [DOI] [PubMed] [Google Scholar]
  7. Crabbe T., Smith B., O'Connell J., Docherty A. Human progelatinase A can be activated by matrilysin. FEBS Lett. 1994 May 23;345(1):14–16. doi: 10.1016/0014-5793(94)00412-9. [DOI] [PubMed] [Google Scholar]
  8. D'Ortho M. P., Jarreau P. H., Delacourt C., Macquin-Mavier I., Levame M., Pezet S., Harf A., Lafuma C. Matrix metalloproteinase and elastase activities in LPS-induced acute lung injury in guinea pigs. Am J Physiol. 1994 Mar;266(3 Pt 1):L209–L216. doi: 10.1152/ajplung.1994.266.3.L209. [DOI] [PubMed] [Google Scholar]
  9. Djukanović R., Wilson J. W., Britten K. M., Wilson S. J., Walls A. F., Roche W. R., Howarth P. H., Holgate S. T. Quantitation of mast cells and eosinophils in the bronchial mucosa of symptomatic atopic asthmatics and healthy control subjects using immunohistochemistry. Am Rev Respir Dis. 1990 Oct;142(4):863–871. doi: 10.1164/ajrccm/142.4.863. [DOI] [PubMed] [Google Scholar]
  10. Dunnill M. S., Massarella G. R., Anderson J. A. A comparison of the quantitative anatomy of the bronchi in normal subjects, in status asthmaticus, in chronic bronchitis, and in emphysema. Thorax. 1969 Mar;24(2):176–179. doi: 10.1136/thx.24.2.176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Emonard H., Grimaud J. A. Matrix metalloproteinases. A review. Cell Mol Biol. 1990;36(2):131–153. [PubMed] [Google Scholar]
  12. Farmer S. G., DeSiato M. A. Effects of a novel nonpeptide bradykinin B2 receptor antagonist on intestinal and airway smooth muscle: further evidence for the tracheal B3 receptor. Br J Pharmacol. 1994 Jun;112(2):461–464. doi: 10.1111/j.1476-5381.1994.tb13095.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Filley W. V., Holley K. E., Kephart G. M., Gleich G. J. Identification by immunofluorescence of eosinophil granule major basic protein in lung tissues of patients with bronchial asthma. Lancet. 1982 Jul 3;2(8288):11–16. doi: 10.1016/s0140-6736(82)91152-7. [DOI] [PubMed] [Google Scholar]
  14. HE C. S., Wilhelm S. M., Pentland A. P., Marmer B. L., Grant G. A., Eisen A. Z., Goldberg G. I. Tissue cooperation in a proteolytic cascade activating human interstitial collagenase. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2632–2636. doi: 10.1073/pnas.86.8.2632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Herbert C. A., Edwards D., Boot J. R., Robinson C. In vitro modulation of the eosinophil-dependent enhancement of the permeability of the bronchial mucosa. Br J Pharmacol. 1991 Oct;104(2):391–398. doi: 10.1111/j.1476-5381.1991.tb12441.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Herbert C. A., Edwards D., Boot J. R., Robinson C. Stimulated eosinophils and proteinases augment the transepithelial flux of albumin in bovine bronchial mucosa. Br J Pharmacol. 1993 Oct;110(2):840–846. doi: 10.1111/j.1476-5381.1993.tb13889.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Herbert C. A., King C. M., Ring P. C., Holgate S. T., Stewart G. A., Thompson P. J., Robinson C. Augmentation of permeability in the bronchial epithelium by the house dust mite allergen Der p1. Am J Respir Cell Mol Biol. 1995 Apr;12(4):369–378. doi: 10.1165/ajrcmb.12.4.7695916. [DOI] [PubMed] [Google Scholar]
  18. Hipps D. S., Hembry R. M., Docherty A. J., Reynolds J. J., Murphy G. Purification and characterization of human 72-kDa gelatinase (type IV collagenase). Use of immunolocalisation to demonstrate the non-coordinate regulation of the 72-kDa and 95-kDa gelatinases by human fibroblasts. Biol Chem Hoppe Seyler. 1991 Apr;372(4):287–296. doi: 10.1515/bchm3.1991.372.1.287. [DOI] [PubMed] [Google Scholar]
  19. Howarth D., Pritzker K. P., Cruz T. F., Kandel R. A. Calcium ionophore A23187 stimulates production of a 144 kDa gelatinase. J Rheumatol. 1993 Jan;20(1):97–101. [PubMed] [Google Scholar]
  20. Jeffery P. K., Wardlaw A. J., Nelson F. C., Collins J. V., Kay A. B. Bronchial biopsies in asthma. An ultrastructural, quantitative study and correlation with hyperreactivity. Am Rev Respir Dis. 1989 Dec;140(6):1745–1753. doi: 10.1164/ajrccm/140.6.1745. [DOI] [PubMed] [Google Scholar]
  21. Kolkenbrock H., Orgel D., Hecker-Kia A., Noack W., Ulbrich N. The complex between a tissue inhibitor of metalloproteinases (TIMP-2) and 72-kDa progelatinase is a metalloproteinase inhibitor. Eur J Biochem. 1991 Jun 15;198(3):775–781. doi: 10.1111/j.1432-1033.1991.tb16080.x. [DOI] [PubMed] [Google Scholar]
  22. Lyons J. G., Birkedal-Hansen B., Pierson M. C., Whitelock J. M., Birkedal-Hansen H. Interleukin-1 beta and transforming growth factor-alpha/epidermal growth factor induce expression of M(r) 95,000 type IV collagenase/gelatinase and interstitial fibroblast-type collagenase by rat mucosal keratinocytes. J Biol Chem. 1993 Sep 5;268(25):19143–19151. [PubMed] [Google Scholar]
  23. Montefort S., Herbert C. A., Robinson C., Holgate S. T. The bronchial epithelium as a target for inflammatory attack in asthma. Clin Exp Allergy. 1992 May;22(5):511–520. doi: 10.1111/j.1365-2222.1992.tb00159.x. [DOI] [PubMed] [Google Scholar]
  24. Motojima S., Frigas E., Loegering D. A., Gleich G. J. Toxicity of eosinophil cationic proteins for guinea pig tracheal epithelium in vitro. Am Rev Respir Dis. 1989 Mar;139(3):801–805. doi: 10.1164/ajrccm/139.3.801. [DOI] [PubMed] [Google Scholar]
  25. Mulligan M. S., Desrochers P. E., Chinnaiyan A. M., Gibbs D. F., Varani J., Johnson K. J., Weiss S. J. In vivo suppression of immune complex-induced alveolitis by secretory leukoproteinase inhibitor and tissue inhibitor of metalloproteinases 2. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11523–11527. doi: 10.1073/pnas.90.24.11523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Murphy G., Hembry R. M., McGarrity A. M., Reynolds J. J., Henderson B. Gelatinase (type IV collagenase) immunolocalization in cells and tissues: use of an antiserum to rabbit bone gelatinase that identifies high and low Mr forms. J Cell Sci. 1989 Mar;92(Pt 3):487–495. doi: 10.1242/jcs.92.3.487. [DOI] [PubMed] [Google Scholar]
  27. Murphy G., Reynolds J. J., Bretz U., Baggiolini M. Partial purification of collagenase and gelatinase from human polymorphonuclear leucocytes. Analysis of their actions on soluble and insoluble collagens. Biochem J. 1982 Apr 1;203(1):209–221. doi: 10.1042/bj2030209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Omari T., Sparrow M. P., Church M. K., Holgate S. T., Robinson C. A comparison of the effects of polyarginine and stimulated eosinophils on the responsiveness of the bovine isovolumic bronchial segment preparation. Br J Pharmacol. 1993 Jun;109(2):553–561. doi: 10.1111/j.1476-5381.1993.tb13606.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pincus S. H. Production of eosinophil-rich guinea pig peritoneal exudates. Blood. 1978 Jul;52(1):127–134. [PubMed] [Google Scholar]
  30. Salo T., Mäkelä M., Kylmäniemi M., Autio-Harmainen H., Larjava H. Expression of matrix metalloproteinase-2 and -9 during early human wound healing. Lab Invest. 1994 Feb;70(2):176–182. [PubMed] [Google Scholar]
  31. Sato H., Takino T., Okada Y., Cao J., Shinagawa A., Yamamoto E., Seiki M. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature. 1994 Jul 7;370(6484):61–65. doi: 10.1038/370061a0. [DOI] [PubMed] [Google Scholar]
  32. Sepper R., Konttinen Y. T., Sorsa T., Koski H. Gelatinolytic and type IV collagenolytic activity in bronchiectasis. Chest. 1994 Oct;106(4):1129–1133. doi: 10.1378/chest.106.4.1129. [DOI] [PubMed] [Google Scholar]
  33. Shapiro S. D. Elastolytic metalloproteinases produced by human mononuclear phagocytes. Potential roles in destructive lung disease. Am J Respir Crit Care Med. 1994 Dec;150(6 Pt 2):S160–S164. doi: 10.1164/ajrccm/150.6_Pt_2.S160. [DOI] [PubMed] [Google Scholar]
  34. Stephens R. J., Freeman G., Evans M. J. Early response of lungs to low levels of nitrogen dioxide. Light and electron microscopy. Arch Environ Health. 1972 Mar;24(3):160–179. doi: 10.1080/00039896.1972.10666066. [DOI] [PubMed] [Google Scholar]
  35. Tao Y., Bazan H. E., Bazan N. G. Platelet-activating factor induces the expression of metalloproteinases-1 and -9, but not -2 or -3, in the corneal epithelium. Invest Ophthalmol Vis Sci. 1995 Feb;36(2):345–354. [PubMed] [Google Scholar]
  36. Tetley T. D. New perspectives on basic mechanisms in lung disease. 6. Proteinase imbalance: its role in lung disease. Thorax. 1993 May;48(5):560–565. doi: 10.1136/thx.48.5.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Triebel S., Bläser J., Reinke H., Tschesche H. A 25 kDa alpha 2-microglobulin-related protein is a component of the 125 kDa form of human gelatinase. FEBS Lett. 1992 Dec 21;314(3):386–388. doi: 10.1016/0014-5793(92)81511-j. [DOI] [PubMed] [Google Scholar]
  38. Tsuda T. T., Kodama A., Yamamura M., Matsuzaki S., Tsuda M. Isolation and characterization of a high molecular weight type IV collagenase isolated from human carcinoma tissue. FEBS Lett. 1993 Mar 15;319(1-2):35–39. doi: 10.1016/0014-5793(93)80032-p. [DOI] [PubMed] [Google Scholar]
  39. Vai F., Fournier M. F., Lafuma J. C., Touaty E., Pariente R. SO2-induced bronchopathy in the rat: abnormal permeability of the bronchial epithelium in vivo and in vitro after anatomic recovery. Am Rev Respir Dis. 1980 May;121(5):851–858. doi: 10.1164/arrd.1980.121.5.851. [DOI] [PubMed] [Google Scholar]
  40. Van Wart H. E., Birkedal-Hansen H. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5578–5582. doi: 10.1073/pnas.87.14.5578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wardlaw A. J., Dunnette S., Gleich G. J., Collins J. V., Kay A. B. Eosinophils and mast cells in bronchoalveolar lavage in subjects with mild asthma. Relationship to bronchial hyperreactivity. Am Rev Respir Dis. 1988 Jan;137(1):62–69. doi: 10.1164/ajrccm/137.1.62. [DOI] [PubMed] [Google Scholar]
  42. Welsh M. J., Shasby D. M., Husted R. M. Oxidants increase paracellular permeability in a cultured epithelial cell line. J Clin Invest. 1985 Sep;76(3):1155–1168. doi: 10.1172/JCI112071. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES