Abstract
1. The aims of this study were to compare in the rat isolated perfused lung preparation, the dilator actions of nicorandil, pinacidil and nitroglycerin on the hypoxic pulmonary pressure response with or without hypercapnic acidosis and to investigate the possible involvement of K channels and EDRF in these effects. 2. Isolated lungs from male Wistar rats (260-320 g) were ventilated with 21%O2 + 5%CO2 + 74%N2 (normoxia) or 5%CO2 + 95%N2 (hypoxia) and perfused with a salt solution supplemented with ficoll and gassed with 40%CO2 + 60%N2 to produce hypercapnic acidosis. Glibenclamide (1 microM), charybdotoxin (0.1 microM), NG-nitro-L-arginine methyl ester (L-NAME, 100 microM) and methylene blue (30 microM) were used to block KATP channels, KCa channels, EDRF synthesis and guanylate cyclase, respectively. 3. Hypoxic pressure response was significantly increased by hypercapnic acidosis (+115%, P < 0.001), L-NAME (+111%, P < 0.001), methylene blue (+100%, P < 0.05) but not by glibenclamide or charybdotoxin. In contrast none of these inhibitors affected the hypoxic hypercapnic acidosis response. 4. Nicorandil, pinacidil and nitroglycerin caused relaxation during the hypoxic pressure response and hypoxic hypercapnic acidosis response. Nicorandil was more potent in the latter. Glibenclamide inhibited the relaxant effects of nicorandil and pinacidil but not those of nitroglycerin during hypoxia alone. In contrast, glibenclamide inhibited the relaxant effects of the three drugs during hypoxia + hypercapnia. Charybdotoxin inhibited the relaxant effect of pinacidil during normocapnia and hypoxia but not those of nicorandil or nitroglycerin. Methylene blue inhibited partially the dilator response to pinacidil but did not modify the effects of nitroglycerin or nicorandil. 5. It is concluded that in the rat isolated lung preparation, EDRF limits hypoxic pulmonary vasoconstriction but not hypoxic vasoconstriction potentiated by hypercapnic acidosis, whereas KATP or KCa channels are not involved in either case. Nicorandil and pinacidil dilate pulmonary vessels mainly through KATP channels but the effects of pinacidil may also involve an additional mechanism of action through KCa channels. Finally it is suggested that nitroglycerin may partly exert its relaxant effects through KATP channels.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Borg C., Mondot S., Mestre M., Cavero I. Nicorandil: differential contribution of K+ channel opening and guanylate cyclase stimulation to its vasorelaxant effects on various endothelin-1-contracted arterial preparations. Comparison to aprikalim (RP 52891) and nitroglycerin. J Pharmacol Exp Ther. 1991 Nov;259(2):526–534. [PubMed] [Google Scholar]
- Brayden J. E., Nelson M. T. Regulation of arterial tone by activation of calcium-dependent potassium channels. Science. 1992 Apr 24;256(5056):532–535. doi: 10.1126/science.1373909. [DOI] [PubMed] [Google Scholar]
- Brimioulle S., Lejeune P., Vachiery J. L., Leeman M., Melot C., Naeije R. Effects of acidosis and alkalosis on hypoxic pulmonary vasoconstriction in dogs. Am J Physiol. 1990 Feb;258(2 Pt 2):H347–H353. doi: 10.1152/ajpheart.1990.258.2.H347. [DOI] [PubMed] [Google Scholar]
- Dawson C. A. Role of pulmonary vasomotion in physiology of the lung. Physiol Rev. 1984 Apr;64(2):544–616. doi: 10.1152/physrev.1984.64.2.544. [DOI] [PubMed] [Google Scholar]
- Dumas J. P., Dumas M., Sgro C., Advenier C., Giudicelli J. F. Effects of two K+ channel openers, aprikalim and pinacidil, on hypoxic pulmonary vasoconstriction. Eur J Pharmacol. 1994 Sep 22;263(1-2):17–23. doi: 10.1016/0014-2999(94)90518-5. [DOI] [PubMed] [Google Scholar]
- Eltze M. Glibenclamide is a competitive antagonist of cromakalim, pinacidil and RP 49356 in guinea-pig pulmonary artery. Eur J Pharmacol. 1989 Jun 20;165(2-3):231–239. doi: 10.1016/0014-2999(89)90717-6. [DOI] [PubMed] [Google Scholar]
- Hamaguchi M., Ishibashi T., Imai S. Involvement of charybdotoxin-sensitive K+ channel in the relaxation of bovine tracheal smooth muscle by glyceryl trinitrate and sodium nitroprusside. J Pharmacol Exp Ther. 1992 Jul;262(1):263–270. [PubMed] [Google Scholar]
- Hasunuma K., Rodman D. M., McMurtry I. F. Effects of K+ channel blockers on vascular tone in the perfused rat lung. Am Rev Respir Dis. 1991 Oct;144(4):884–887. doi: 10.1164/ajrccm/144.4.884. [DOI] [PubMed] [Google Scholar]
- Hofman W. F., el-Kashef H. A., Endrédi J., Ehrhart I. C. Effect of methylene blue on vasoreactivity in dog lung. Am J Physiol. 1992 Aug;263(2 Pt 2):H587–H596. doi: 10.1152/ajpheart.1992.263.2.H587. [DOI] [PubMed] [Google Scholar]
- Ignarro L. J., Lippton H., Edwards J. C., Baricos W. H., Hyman A. L., Kadowitz P. J., Gruetter C. A. Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: evidence for the involvement of S-nitrosothiols as active intermediates. J Pharmacol Exp Ther. 1981 Sep;218(3):739–749. [PubMed] [Google Scholar]
- Jahangir A., Terzic A., Kurachi Y. Intracellular acidification and ADP enhance nicorandil induction of ATP sensitive potassium channel current in cardiomyocytes. Cardiovasc Res. 1994 Jun;28(6):831–835. doi: 10.1093/cvr/28.6.831. [DOI] [PubMed] [Google Scholar]
- Kitamura K., Kamouchi M. K channel openers activate different K channels in vascular smooth muscle cells. Cardiovasc Drugs Ther. 1993 Aug;7 (Suppl 3):539–546. doi: 10.1007/BF00877619. [DOI] [PubMed] [Google Scholar]
- Kwok W. M., Kass R. S. Inhibition of pinacidil induced IK(ATP) in heart by changes in extracellular pH. Cardiovasc Res. 1994 Jun;28(6):836–840. doi: 10.1093/cvr/28.6.836. [DOI] [PubMed] [Google Scholar]
- Liu S. F., Crawley D. E., Barnes P. J., Evans T. W. Endothelium-derived relaxing factor inhibits hypoxic pulmonary vasoconstriction in rats. Am Rev Respir Dis. 1991 Jan;143(1):32–37. doi: 10.1164/ajrccm/143.1.32. [DOI] [PubMed] [Google Scholar]
- Madden J. A., Dawson C. A., Harder D. R. Hypoxia-induced activation in small isolated pulmonary arteries from the cat. J Appl Physiol (1985) 1985 Jul;59(1):113–118. doi: 10.1152/jappl.1985.59.1.113. [DOI] [PubMed] [Google Scholar]
- Magnon M., Durand I., Cavero I. The contribution of guanylate cyclase stimulation and K+ channel opening to nicorandil-induced vasorelaxation depends on the conduit vessel and on the nature of the spasmogen. J Pharmacol Exp Ther. 1994 Mar;268(3):1411–1418. [PubMed] [Google Scholar]
- Malik A. B., Kidd B. S. Independent effects of changes in H+ and CO 2 concentrations on hypoxic pulmonary vasoconstriction. J Appl Physiol. 1973 Mar;34(3):318–323. doi: 10.1152/jappl.1973.34.3.318. [DOI] [PubMed] [Google Scholar]
- Mazmanian G. M., Baudet B., Brink C., Cerrina J., Kirkiacharian S., Weiss M. Methylene blue potentiates vascular reactivity in isolated rat lungs. J Appl Physiol (1985) 1989 Mar;66(3):1040–1045. doi: 10.1152/jappl.1989.66.3.1040. [DOI] [PubMed] [Google Scholar]
- McMurtry I. F. Angiotensin is not required for hypoxic constriction in salt solution-perfused rat lungs. J Appl Physiol Respir Environ Exerc Physiol. 1984 Feb;56(2):375–380. doi: 10.1152/jappl.1984.56.2.375. [DOI] [PubMed] [Google Scholar]
- Meisheri K. D., Khan S. A., Martin J. L. Vascular pharmacology of ATP-sensitive K+ channels: interactions between glyburide and K+ channel openers. J Vasc Res. 1993 Jan-Feb;30(1):2–12. doi: 10.1159/000158969. [DOI] [PubMed] [Google Scholar]
- Miller V. M., Vanhoutte P. M. Is nitric oxide the only endothelium-derived relaxing factor in canine femoral veins? Am J Physiol. 1989 Dec;257(6 Pt 2):H1910–H1916. doi: 10.1152/ajpheart.1989.257.6.H1910. [DOI] [PubMed] [Google Scholar]
- Nelson M. T., Brayden J. E. Regulation of arterial tone by calcium-dependent K+ channels and ATP-sensitive K+ channels. Cardiovasc Drugs Ther. 1993 Aug;7 (Suppl 3):605–610. doi: 10.1007/BF00877627. [DOI] [PubMed] [Google Scholar]
- Post J. M., Hume J. R., Archer S. L., Weir E. K. Direct role for potassium channel inhibition in hypoxic pulmonary vasoconstriction. Am J Physiol. 1992 Apr;262(4 Pt 1):C882–C890. doi: 10.1152/ajpcell.1992.262.4.C882. [DOI] [PubMed] [Google Scholar]
- Quast U. Potassium channel openers: pharmacological and clinical aspects. Fundam Clin Pharmacol. 1992;6(7):279–293. doi: 10.1111/j.1472-8206.1992.tb00122.x. [DOI] [PubMed] [Google Scholar]
- Raffestin B., McMurtry I. F. Effects of intracellular pH on hypoxic vasoconstriction in rat lungs. J Appl Physiol (1985) 1987 Dec;63(6):2524–2531. doi: 10.1152/jappl.1987.63.6.2524. [DOI] [PubMed] [Google Scholar]
- Rudolph A. M., Yuan S. Response of the pulmonary vasculature to hypoxia and H+ ion concentration changes. J Clin Invest. 1966 Mar;45(3):399–411. doi: 10.1172/JCI105355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stockbridge N., Zhang H., Weir B. Effects of K+ channel agonists cromakalim and pinacidil on rat basilar artery smooth muscle cells are mediated by Ca(++)-activated K+ channels. Biochem Biophys Res Commun. 1991 Nov 27;181(1):172–178. doi: 10.1016/s0006-291x(05)81397-x. [DOI] [PubMed] [Google Scholar]
- Winbury M. M., Howe B. B., Hefner M. A. Effect of nitrates and other coronary dilators on large and small coronary vessels: an hypothesis for the mechanism of action of nitrates. J Pharmacol Exp Ther. 1969 Jul;168(1):70–95. [PubMed] [Google Scholar]
- Zhao Y., Packer C. S., Rhoades R. A. Pulmonary vein contracts in response to hypoxia. Am J Physiol. 1993 Jul;265(1 Pt 1):L87–L92. doi: 10.1152/ajplung.1993.265.1.L87. [DOI] [PubMed] [Google Scholar]
