Abstract
Papillomavirus-induced lesions often regress spontaneously in both humans and animals. Papilloma regression is deemed to be due to a cell-mediated immune response, the nature of which is still ill defined, and is accompanied by immune cell infiltrates. To gain further information on the nature and role of the immune cells present in regressing papillomas, we have analyzed biopsies of papillomas induced in the soft palate of cattle by bovine papillomavirus type 4 (BPV-4) and have phenotypically characterized and quantified the lymphocytes present in these lesions. Eleven papilloma biopsies and seven biopsies of noninfected palate were analyzed for the presence of activated CD4+, CD8+, and gamma delta(WC1+) lymphocytes. We found large numbers of lymphocytes in the subepithelial derma of papillomas but not in normal palate tissue; these cellular masses consisted predominantly of CD4+ lymphocytes, with only a few CD8+ and gamma delta(WC1+) lymphocytes, generally positioned at the periphery of these masses. All three subtypes of lymphocytes were found interdigitated with the cells of the basal layer both in papillomas and in normal palate tissue, but while basal layer CD8+ and gamma delta(WC1+) T cells were detected with similar frequencies in papillomas and uninfected palate, basal layer CD4+ T cells were much more frequent in papillomas. CD4+, CD8+, and gamma delta(WC1+) lymphocytes were found in the suprabasal layers of papillomas, but the CD8+ and gamma delta(WC1+) T cells were more numerous and had migrated further into the differentiating keratinocytes of the papilloma fronds than the CD4+ T cells. We conclude that T-cell infiltration is characteristic of regressing BPV-4 papillomas, that CD4+ lymphocytes are specifically and massively recruited into the regressing papillomas, and that although all three lymphocyte subsets can penetrate the papilloma, only the CD8+ and gamma delta(WC1+) lymphocytes are able to migrate into the fronds. These results suggest that all three lymphocyte subsets have an important role to fulfill during natural regression of papillomas.
Full Text
The Full Text of this article is available as a PDF (996.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Campo M. S., Grindlay G. J., O'Neil B. W., Chandrachud L. M., McGarvie G. M., Jarrett W. F. Prophylactic and therapeutic vaccination against a mucosal papillomavirus. J Gen Virol. 1993 Jun;74(Pt 6):945–953. doi: 10.1099/0022-1317-74-6-945. [DOI] [PubMed] [Google Scholar]
- Campo M. S., O'Neil B. W., Barron R. J., Jarrett W. F. Experimental reproduction of the papilloma-carcinoma complex of the alimentary canal in cattle. Carcinogenesis. 1994 Aug;15(8):1597–1601. doi: 10.1093/carcin/15.8.1597. [DOI] [PubMed] [Google Scholar]
- Chambers M. A., Stacey S. N., Arrand J. R., Stanley M. A. Delayed-type hypersensitivity response to human papillomavirus type 16 E6 protein in a mouse model. J Gen Virol. 1994 Jan;75(Pt 1):165–169. doi: 10.1099/0022-1317-75-1-165. [DOI] [PubMed] [Google Scholar]
- Clevers H., MacHugh N. D., Bensaid A., Dunlap S., Baldwin C. L., Kaushal A., Iams K., Howard C. J., Morrison W. I. Identification of a bovine surface antigen uniquely expressed on CD4-CD8- T cell receptor gamma/delta+ T lymphocytes. Eur J Immunol. 1990 Apr;20(4):809–817. doi: 10.1002/eji.1830200415. [DOI] [PubMed] [Google Scholar]
- Coleman N., Birley H. D., Renton A. M., Hanna N. F., Ryait B. K., Byrne M., Taylor-Robinson D., Stanley M. A. Immunological events in regressing genital warts. Am J Clin Pathol. 1994 Dec;102(6):768–774. doi: 10.1093/ajcp/102.6.768. [DOI] [PubMed] [Google Scholar]
- Dieli F., Asherson G. L., Romano G. C., Sireci G., Gervasi F., Salerno A. IL-4 is essential for the systemic transfer of delayed hypersensitivity by T cell lines. Role of gamma/delta cells. J Immunol. 1994 Mar 15;152(6):2698–2704. [PubMed] [Google Scholar]
- Gerdes J., Lemke H., Baisch H., Wacker H. H., Schwab U., Stein H. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol. 1984 Oct;133(4):1710–1715. [PubMed] [Google Scholar]
- Hall H., Teuscher C., Urie P., Boden B., Robison R. Induced regression of bovine papillomas by intralesional immunotherapy. Ther Immunol. 1994 Dec;1(6):319–324. [PubMed] [Google Scholar]
- Hein W. R., Mackay C. R. Prominence of gamma delta T cells in the ruminant immune system. Immunol Today. 1991 Jan;12(1):30–34. doi: 10.1016/0167-5699(91)90109-7. [DOI] [PubMed] [Google Scholar]
- Höpfl R. M., Christensen N. D., Angell M. G., Kreider J. W. Skin test to assess immunity against cottontail rabbit papillomavirus antigens in rabbits with progressing papillomas or after papilloma regression. J Invest Dermatol. 1993 Aug;101(2):227–231. doi: 10.1111/1523-1747.ep12364825. [DOI] [PubMed] [Google Scholar]
- Jackson M. E., Campo M. S., Gaukroger J. M. Cooperation between papillomavirus and chemical cofactors in oncogenesis. Crit Rev Oncog. 1993;4(3):277–291. [PubMed] [Google Scholar]
- Janeway C. A., Jr, Jones B., Hayday A. Specificity and function of T cells bearing gamma delta receptors. Immunol Today. 1988 Mar;9(3):73–76. doi: 10.1016/0167-5699(88)91267-4. [DOI] [PubMed] [Google Scholar]
- KREIDER J. W. STUDIES ON THE MECHANISM RESPONSIBLE FOR THE SPONTANEOUS REGRESSION OF THE SHOPE RABBIT PAPILLOMA. Cancer Res. 1963 Oct;23:1593–1599. [PubMed] [Google Scholar]
- Kaufmann S. H. gamma/delta and other unconventional T lymphocytes: what do they see and what do they do? Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2272–2279. doi: 10.1073/pnas.93.6.2272. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Komano H., Fujiura Y., Kawaguchi M., Matsumoto S., Hashimoto Y., Obana S., Mombaerts P., Tonegawa S., Yamamoto H., Itohara S. Homeostatic regulation of intestinal epithelia by intraepithelial gamma delta T cells. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):6147–6151. doi: 10.1073/pnas.92.13.6147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McGarvie G. M., Grindlay G. J., Chandrachud L. M., O'Neil B. W., Jarrett W. F., Campo M. S. T cell responses to BPV-4 E7 during infection and mapping of T cell epitopes. Virology. 1995 Jan 10;206(1):504–510. doi: 10.1016/s0042-6822(95)80066-2. [DOI] [PubMed] [Google Scholar]
- McLean C. S., Sterling J. S., Mowat J., Nash A. A., Stanley M. A. Delayed-type hypersensitivity response to the human papillomavirus type 16 E7 protein in a mouse model. J Gen Virol. 1993 Feb;74(Pt 2):239–245. doi: 10.1099/0022-1317-74-2-239. [DOI] [PubMed] [Google Scholar]
- Naessens J., Sileghem M., MacHugh N., Park Y. H., Davis W. C., Toye P. Selection of BoCD25 monoclonal antibodies by screening mouse L cells transfected with the bovine p55-interleukin-2 (IL-2) receptor gene. Immunology. 1992 Jun;76(2):305–309. [PMC free article] [PubMed] [Google Scholar]
- Okabayashi M., Angell M. G., Budgeon L. R., Kreider J. W. Shope papilloma cell and leukocyte proliferation in regressing and progressing lesions. Am J Pathol. 1993 Feb;142(2):489–496. [PMC free article] [PubMed] [Google Scholar]
- Okabayashi M., Angell M. G., Christensen N. D., Kreider J. W. Morphometric analysis and identification of infiltrating leucocytes in regressing and progressing Shope rabbit papillomas. Int J Cancer. 1991 Dec 2;49(6):919–923. doi: 10.1002/ijc.2910490620. [DOI] [PubMed] [Google Scholar]
- Schild H., Mavaddat N., Litzenberger C., Ehrich E. W., Davis M. M., Bluestone J. A., Matis L., Draper R. K., Chien Y. H. The nature of major histocompatibility complex recognition by gamma delta T cells. Cell. 1994 Jan 14;76(1):29–37. doi: 10.1016/0092-8674(94)90170-8. [DOI] [PubMed] [Google Scholar]
- Selvakumar R., Borenstein L. A., Lin Y. L., Ahmed R., Wettstein F. O. Immunization with nonstructural proteins E1 and E2 of cottontail rabbit papillomavirus stimulates regression of virus-induced papillomas. J Virol. 1995 Jan;69(1):602–605. doi: 10.1128/jvi.69.1.602-605.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tagami H., Ogino A., Takigawa M., Imamura S., Ofuji S. Regression of plane warts following spontaneous inflammation. An histopathological study. Br J Dermatol. 1974 Feb;90(2):147–154. doi: 10.1111/j.1365-2133.1974.tb06378.x. [DOI] [PubMed] [Google Scholar]
- Taniguchi T., Minami Y. The IL-2/IL-2 receptor system: a current overview. Cell. 1993 Apr 9;73(1):5–8. doi: 10.1016/0092-8674(93)90152-g. [DOI] [PubMed] [Google Scholar]