Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Feb;117(4):743–749. doi: 10.1111/j.1476-5381.1996.tb15253.x

Neurochemical and behavioural interactions between ibogaine and nicotine in the rat.

M E Benwell 1, P E Holtom 1, R J Moran 1, D J Balfour 1
PMCID: PMC1909352  PMID: 8646423

Abstract

1. In vivo brain microdialysis has been employed to investigate the effects of ibogaine on nicotine-induced changes in dopamine overflow in the nucleus accumbens (NAc) of freely moving rats. The effects of the compound on locomotor responses to nicotine and behaviour in the elevated plus-maze were also examined. 2. No changes were observed in the dopamine overflow or the locomotor activity of the animals following the administration of ibogaine (40 mg kg-1, i.p.). However, ibogaine, administered 22 h earlier, significantly (P < 0.01) attenuated the increase in dopamine overflow but not the hyperlocomotion, evoked by nicotine. 3. In the elevated plus-maze test, significant reductions in the open:total runway entries in both saline-treated controls (P < 0.05) and nicotine-treated (P < 0.01) rats were obtained when the animals were tested 22 h after pretreatment with ibogaine (40 mg kg-1, i.p.). The total activity was significantly (P < 0.01) greater in the nicotine-treated rats but this response was not affected by ibogaine pretreatment. 4. Administration of ibogaine was associated with reductions in the tissue levels of 5-hydroxyindoleacetic acid (5-HIAA) in the NAc (P < 0.01) and striatum (P < 0.05) and an increase in the level of this metabolite in the medial prefrontal cortex (mPFC) (P < 0.01) while the levels of dopamine and 5-hydroxytryptamine (5-HT) in the mPFC were reduced (P < 0.05). The DOPAC/dopamine (P < 0.05) and 5-HIAA/5-HT (P < 0.01) ratios were significantly increased in the mPFC for at least 7 days after a single treatment with ibogaine. 5. Ibogaine attenuates the nicotine-induced increases in dopamine overflow in the NAc and may, therefore, inhibit the rewarding effects of this drug. However, the long lasting anxiogenesis induced by ibogaine warrant further investigation before its use could be recommended for smokers.

Full text

PDF
743

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abercrombie E. D., Keefe K. A., DiFrischia D. S., Zigmond M. J. Differential effect of stress on in vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex. J Neurochem. 1989 May;52(5):1655–1658. doi: 10.1111/j.1471-4159.1989.tb09224.x. [DOI] [PubMed] [Google Scholar]
  2. Balfour D. J., Benwell M. E., Graham C. A., Vale A. L. Behavioural and adrenocortical responses to nicotine measured in rats with selective lesions of the 5-hydroxytryptaminergic fibres innervating the hippocampus. Br J Pharmacol. 1986 Oct;89(2):341–347. doi: 10.1111/j.1476-5381.1986.tb10266.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benwell M. E., Balfour D. J., Birrell C. E. Desensitization of the nicotine-induced mesolimbic dopamine responses during constant infusion with nicotine. Br J Pharmacol. 1995 Jan;114(2):454–460. doi: 10.1111/j.1476-5381.1995.tb13248.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Benwell M. E., Balfour D. J. The effects of acute and repeated nicotine treatment on nucleus accumbens dopamine and locomotor activity. Br J Pharmacol. 1992 Apr;105(4):849–856. doi: 10.1111/j.1476-5381.1992.tb09067.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cappendijk S. L., Dzoljic M. R. Inhibitory effects of ibogaine on cocaine self-administration in rats. Eur J Pharmacol. 1993 Sep 14;241(2-3):261–265. doi: 10.1016/0014-2999(93)90212-z. [DOI] [PubMed] [Google Scholar]
  6. Clarke P. B., Fu D. S., Jakubovic A., Fibiger H. C. Evidence that mesolimbic dopaminergic activation underlies the locomotor stimulant action of nicotine in rats. J Pharmacol Exp Ther. 1988 Aug;246(2):701–708. [PubMed] [Google Scholar]
  7. Clarke P. B., Pert A. Autoradiographic evidence for nicotine receptors on nigrostriatal and mesolimbic dopaminergic neurons. Brain Res. 1985 Dec 2;348(2):355–358. doi: 10.1016/0006-8993(85)90456-1. [DOI] [PubMed] [Google Scholar]
  8. Clineschmidt B. V., Zacchei A. G., Totaro J. A., Pflueger A. B., McGuffin J. C., Wishousky T. I. Fenfluramine and brain serotonin. Ann N Y Acad Sci. 1978 Jun 12;305:222–241. doi: 10.1111/j.1749-6632.1978.tb31526.x. [DOI] [PubMed] [Google Scholar]
  9. Cohen S. Cocaine. JAMA. 1975 Jan 6;231(1):74–75. [PubMed] [Google Scholar]
  10. Corrigall W. A., Franklin K. B., Coen K. M., Clarke P. B. The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacology (Berl) 1992;107(2-3):285–289. doi: 10.1007/BF02245149. [DOI] [PubMed] [Google Scholar]
  11. Di Chiara G., Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5274–5278. doi: 10.1073/pnas.85.14.5274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dworkin S. I., Gleeson S., Meloni D., Koves T. R., Martin T. J. Effects of ibogaine on responding maintained by food, cocaine and heroin reinforcement in rats. Psychopharmacology (Berl) 1995 Feb;117(3):257–261. doi: 10.1007/BF02246099. [DOI] [PubMed] [Google Scholar]
  13. Dzoljic E. D., Kaplan C. D., Dzoljic M. R. Effect of ibogaine on naloxone-precipitated withdrawal syndrome in chronic morphine-dependent rats. Arch Int Pharmacodyn Ther. 1988 Jul-Aug;294:64–70. [PubMed] [Google Scholar]
  14. GERSHON S., LANG W. J. A psycho-pharmacological study of some indole alkaloids. Arch Int Pharmacodyn Ther. 1962 Jan 1;135:31–56. [PubMed] [Google Scholar]
  15. Glick S. D., Rossman K., Rao N. C., Maisonneuve I. M., Carlson J. N. Effects of ibogaine on acute signs of morphine withdrawal in rats: independence from tremor. Neuropharmacology. 1992 May;31(5):497–500. doi: 10.1016/0028-3908(92)90089-8. [DOI] [PubMed] [Google Scholar]
  16. Glick S. D., Rossman K., Steindorf S., Maisonneuve I. M., Carlson J. N. Effects and aftereffects of ibogaine on morphine self-administration in rats. Eur J Pharmacol. 1991 Apr 3;195(3):341–345. doi: 10.1016/0014-2999(91)90474-5. [DOI] [PubMed] [Google Scholar]
  17. Kawahara H., Yoshida M., Yokoo H., Nishi M., Tanaka M. Psychological stress increases serotonin release in the rat amygdala and prefrontal cortex assessed by in vivo microdialysis. Neurosci Lett. 1993 Nov 12;162(1-2):81–84. doi: 10.1016/0304-3940(93)90565-3. [DOI] [PubMed] [Google Scholar]
  18. Koob G. F. Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci. 1992 May;13(5):177–184. doi: 10.1016/0165-6147(92)90060-j. [DOI] [PubMed] [Google Scholar]
  19. Maisonneuve I. M., Glick S. D. Interactions between ibogaine and cocaine in rats: in vivo microdialysis and motor behavior. Eur J Pharmacol. 1992 Mar 3;212(2-3):263–266. doi: 10.1016/0014-2999(92)90340-a. [DOI] [PubMed] [Google Scholar]
  20. Maisonneuve I. M., Keller R. W., Jr, Glick S. D. Interactions between ibogaine, a potential anti-addictive agent, and morphine: an in vivo microdialysis study. Eur J Pharmacol. 1991 Jun 18;199(1):35–42. doi: 10.1016/0014-2999(91)90634-3. [DOI] [PubMed] [Google Scholar]
  21. Maisonneuve I. M., Rossman K. L., Keller R. W., Jr, Glick S. D. Acute and prolonged effects of ibogaine on brain dopamine metabolism and morphine-induced locomotor activity in rats. Brain Res. 1992 Mar 13;575(1):69–73. doi: 10.1016/0006-8993(92)90424-8. [DOI] [PubMed] [Google Scholar]
  22. Moghaddam B., Roth R. H., Bunney B. S. Characterization of dopamine release in the rat medial prefrontal cortex as assessed by in vivo microdialysis: comparison to the striatum. Neuroscience. 1990;36(3):669–676. doi: 10.1016/0306-4522(90)90009-s. [DOI] [PubMed] [Google Scholar]
  23. O'Hearn E., Molliver M. E. Degeneration of Purkinje cells in parasagittal zones of the cerebellar vermis after treatment with ibogaine or harmaline. Neuroscience. 1993 Jul;55(2):303–310. doi: 10.1016/0306-4522(93)90500-f. [DOI] [PubMed] [Google Scholar]
  24. Pei Q., Zetterström T., Fillenz M. Tail pinch-induced changes in the turnover and release of dopamine and 5-hydroxytryptamine in different brain regions of the rat. Neuroscience. 1990;35(1):133–138. doi: 10.1016/0306-4522(90)90127-p. [DOI] [PubMed] [Google Scholar]
  25. Pellow S., Chopin P., File S. E., Briley M. Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods. 1985 Aug;14(3):149–167. doi: 10.1016/0165-0270(85)90031-7. [DOI] [PubMed] [Google Scholar]
  26. Popik P., Layer R. T., Skolnick P. 100 years of ibogaine: neurochemical and pharmacological actions of a putative anti-addictive drug. Pharmacol Rev. 1995 Jun;47(2):235–253. [PubMed] [Google Scholar]
  27. Reavill C., Stolerman I. P. Locomotor activity in rats after administration of nicotinic agonists intracerebrally. Br J Pharmacol. 1990 Feb;99(2):273–278. doi: 10.1111/j.1476-5381.1990.tb14693.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. SCHNEIDER J. A., SIGG E. B. Neuropharmacological studies on ibogaine, an indole alkaloid with central-stimulant properties. Ann N Y Acad Sci. 1957 Mar 14;66(3):765–776. doi: 10.1111/j.1749-6632.1957.tb40765.x. [DOI] [PubMed] [Google Scholar]
  29. Shoaib M., Benwell M. E., Akbar M. T., Stolerman I. P., Balfour D. J. Behavioural and neurochemical adaptations to nicotine in rats: influence of NMDA antagonists. Br J Pharmacol. 1994 Apr;111(4):1073–1080. doi: 10.1111/j.1476-5381.1994.tb14854.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Singer G., Wallace M., Hall R. Effects of dopaminergic nucleus accumbens lesions on the acquisition of schedule induced self injection of nicotine in the rat. Pharmacol Biochem Behav. 1982 Sep;17(3):579–581. doi: 10.1016/0091-3057(82)90321-5. [DOI] [PubMed] [Google Scholar]
  31. Trouvin J. H., Jacqmin P., Rouch C., Lesne M., Jacquot C. Benzodiazepine receptors are involved in tabernanthine-induced tremor: in vitro and in vivo evidence. Eur J Pharmacol. 1987 Aug 21;140(3):303–309. doi: 10.1016/0014-2999(87)90287-1. [DOI] [PubMed] [Google Scholar]
  32. Vale A. L., Balfour D. J. Aversive environmental stimuli as a factor in the psychostimulant response to nicotine. Pharmacol Biochem Behav. 1989 Apr;32(4):857–860. doi: 10.1016/0091-3057(89)90048-8. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES