Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Jan;117(1):224–230. doi: 10.1111/j.1476-5381.1996.tb15178.x

The role of diacylglycerol and activation of protein kinase C in alpha 1A-adrenoceptor-mediated contraction to noradrenaline of rat isolated epididymal vas deferens.

R P Burt 1, C R Chapple 1, I Marshall 1
PMCID: PMC1909355  PMID: 8825367

Abstract

1. The mechanism of contraction to noradrenaline (pEC50 5.6 +/- 0.1) in the rat epididymal vas deferens (mediated via alpha 1A-adrenoceptors) has been studied in functional experiments. 2. Contractions to noradrenaline at 10(-6) M were potentiated by the diacylglycerol (DAG) kinase inhibitor R 59022 (3 x 10(-7) M) from 49 +/- 4% to 63 +/- 3% maximum response and the time taken from initiation of contraction to the maximum response was reduced from 16 +/- 2 s to 9 +/- 1 s. The same contractions were not significantly potentiated by the DAG lipase inhibitor, U-57,908, 10(-5) M (51 +/- 2% control and 53 +/- 4% in the presence of U-57,908) nor was the time taken from initiation of contraction to the maximum response significantly altered (17 +/- 1 s control and 16 +/- 1 s in the presence of U-57,908). 3. Concentration-dependent contractions to noradrenaline (NA) were reduced by staurosporine (10(-7) M) and the selective protein kinase C inhibitor, calphostin C (10(-6) M) from 68 +/- 2% (NA, 3 x 10(-6) M) to 28 +/- 2% and 20 +/- 2% respectively and from 94 +/- 2% (NA, 3 x 10(-5) M) to 50 +/- 2% and 44 +/- 2% respectively. Contractions to K+ (40 +/- 2% maximum response to NA) were also significantly reduced by staurosporine (10(-7) M) (35 +/- 2%) but not by calphostin C (43 +/- 3%). 4. The phorbol ester, phorbol-12,13-dibutyrate (PDBu), produced a phasic, concentration-dependent contraction (10(-7) M - 10(-4) M) which was 41 +/- 2% of the maximum response to NA at 10(-4) M PDBu. The contraction to PDBu (10(-5) M) was reduced by calphostin C (10(-6) M) from 33 +/- 5% to 4 +/- 1% maximum response to NA. 5. Non-cumulative contractions to NA (10(-8) M - 10(-4) M) were abolished in Ca(2+)-free Krebs solution containing EGTA (1 mM) and were reduced in the presence of nifedipine (10(-6)M) in normal Krebs solution by 91 +/- 2% at 10(-4)M NA. The contraction to PDBu (10(-5)M, 33 +/- 5% maximum response to NA) was also abolished in Ca(2+)-free Krebs solution containing EGTA (1 mM) or by the presence of nifedipine (10(-6)M) in normal Krebs solution. 6. When NA (10(-4)M) was added to vasa deferentia in Ca(2+)-free Krebs solution containing EGTA (1 mM), following its wash out (and with EGTA later removed from the Krebs solution), readdition of Ca2+ (2.5 mM) to the Krebs solution produced no response. Cyclopiazonic acid (10(-5)M), which can deplete Ca2+ from intracellular stores, also produced no contraction. Therefore influx of extracellular Ca2+ is not a consequence of depletion of intracellular Ca2+ stores (capacitative Ca2+ influx). 7. Pre-incubation of tissues for 30 min with either cyclopiazonic acid (10(-5)M) or ryanodine (10(-4)M), which can both deplete intracellular Ca2+ stores, did not reduce the contractions to NA (3 x 10(-6)M). Pre-incubation of vasa deferentia with cyclopiazonic acid (1 or 3 min, when any rise in [Ca2+]i produced by cyclopiazonic acid might still exist) did not potentiate the contraction to PDBu (10(-5)M). Thus mobilization of intracellular Ca2+ may not be required for the activation of protein kinase C involved in these contractions. 8. In conclusion, the contraction of the rat epididymal vas deferens to NA mediated by alpha 1A-adrenoceptors appears to depend upon activation of protein kinase C by diacylglycerol, resulting in the influx of extracellular Ca2+ through voltage-gated Ca2+ channels. There was no evidence for a role of inositol trisphosphate in the contraction to noradrenaline in this tissue.

Full text

PDF
224

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aboud R., Shafii M., Docherty J. R. Investigation of the subtypes of alpha 1-adrenoceptor mediating contractions of rat aorta, vas deferens and spleen. Br J Pharmacol. 1993 May;109(1):80–87. doi: 10.1111/j.1476-5381.1993.tb13534.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Abraham S. T., Rice P. J. Protein kinase C-mediated contractile response of the rat vas deferens. Eur J Pharmacol. 1992 Aug 6;218(2-3):243–249. doi: 10.1016/0014-2999(92)90175-4. [DOI] [PubMed] [Google Scholar]
  3. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  4. Bishop W. R., Bell R. M. Attenuation of sn-1,2-diacylglycerol second messengers. Metabolism of exogenous diacylglycerols by human platelets. J Biol Chem. 1986 Sep 25;261(27):12513–12519. [PubMed] [Google Scholar]
  5. Bourreau J. P., Zhang Z. D., Low A. M., Kwan C. Y., Daniel E. E. Ryanodine and the adrenergic, purinergic stimulation in the rat vas deferens smooth muscle: functional and radioligand binding studies. J Pharmacol Exp Ther. 1991 Mar;256(3):1063–1071. [PubMed] [Google Scholar]
  6. Bruns R. F., Miller F. D., Merriman R. L., Howbert J. J., Heath W. F., Kobayashi E., Takahashi I., Tamaoki T., Nakano H. Inhibition of protein kinase C by calphostin C is light-dependent. Biochem Biophys Res Commun. 1991 Apr 15;176(1):288–293. doi: 10.1016/0006-291x(91)90922-t. [DOI] [PubMed] [Google Scholar]
  7. Burt R. P., Chapple C. R., Marshall I. Evidence for a functional alpha 1A- (alpha 1C-) adrenoceptor mediating contraction of the rat epididymal vas deferens and an alpha 1B-adrenoceptor mediating contraction of the rat spleen. Br J Pharmacol. 1995 Jun;115(3):467–475. doi: 10.1111/j.1476-5381.1995.tb16356.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Burt R. P., Chapple C. R., Marshall I. The role of capacitative Ca2+ influx in the alpha 1B-adrenoceptor-mediated contraction to phenylephrine of the rat spleen. Br J Pharmacol. 1995 Oct;116(4):2327–2333. doi: 10.1111/j.1476-5381.1995.tb15073.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bültmann R., von Kügelgen I., Starke K. Effects of nifedipine and ryanodine on adrenergic neurogenic contractions of rat vas deferens: evidence for a pulse-to-pulse change in Ca2+ sources. Br J Pharmacol. 1993 Apr;108(4):1062–1070. doi: 10.1111/j.1476-5381.1993.tb13506.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Castagna M., Takai Y., Kaibuchi K., Sano K., Kikkawa U., Nishizuka Y. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem. 1982 Jul 10;257(13):7847–7851. [PubMed] [Google Scholar]
  11. Fasolato C., Innocenti B., Pozzan T. Receptor-activated Ca2+ influx: how many mechanisms for how many channels? Trends Pharmacol Sci. 1994 Mar;15(3):77–83. doi: 10.1016/0165-6147(94)90282-8. [DOI] [PubMed] [Google Scholar]
  12. Ford D. A., Miyake R., Glaser P. E., Gross R. W. Activation of protein kinase C by naturally occurring ether-linked diglycerides. J Biol Chem. 1989 Aug 15;264(23):13818–13824. [PubMed] [Google Scholar]
  13. Fox A. W., Abel P. W., Minneman K. P. Activation of alpha 1-adrenoceptors increases [3H]inositol metabolism in rat vas deferens and caudal artery. Eur J Pharmacol. 1985 Oct 8;116(1-2):145–152. doi: 10.1016/0014-2999(85)90195-5. [DOI] [PubMed] [Google Scholar]
  14. Haller H., Smallwood J. I., Rasmussen H. Protein kinase C translocation in intact vascular smooth muscle strips. Biochem J. 1990 Sep 1;270(2):375–381. doi: 10.1042/bj2700375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Han C., Abel P. W., Minneman K. P. Alpha 1-adrenoceptor subtypes linked to different mechanisms for increasing intracellular Ca2+ in smooth muscle. Nature. 1987 Sep 24;329(6137):333–335. doi: 10.1038/329333a0. [DOI] [PubMed] [Google Scholar]
  16. Itoh T., Kajikuri J., Kuriyama H. Characteristic features of noradrenaline-induced Ca2+ mobilization and tension in arterial smooth muscle of the rabbit. J Physiol. 1992 Nov;457:297–314. doi: 10.1113/jphysiol.1992.sp019379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kanoh H., Sakane F., Imai S., Wada I. Diacylglycerol kinase and phosphatidic acid phosphatase--enzymes metabolizing lipid second messengers. Cell Signal. 1993 Sep;5(5):495–503. doi: 10.1016/0898-6568(93)90045-n. [DOI] [PubMed] [Google Scholar]
  18. Kobayashi E., Nakano H., Morimoto M., Tamaoki T. Calphostin C (UCN-1028C), a novel microbial compound, is a highly potent and specific inhibitor of protein kinase C. Biochem Biophys Res Commun. 1989 Mar 15;159(2):548–553. doi: 10.1016/0006-291x(89)90028-4. [DOI] [PubMed] [Google Scholar]
  19. Lee M. W., Severson D. L. Signal transduction in vascular smooth muscle: diacylglycerol second messengers and PKC action. Am J Physiol. 1994 Sep;267(3 Pt 1):C659–C678. doi: 10.1152/ajpcell.1994.267.3.C659. [DOI] [PubMed] [Google Scholar]
  20. Marshall I., Burt R. P., Chapple C. R. Noradrenaline contractions of human prostate mediated by alpha 1A-(alpha 1c-) adrenoceptor subtype. Br J Pharmacol. 1995 Jul;115(5):781–786. doi: 10.1111/j.1476-5381.1995.tb15001.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Merkel L. A., Rivera L. M., Colussi D. J., Perrone M. H. Protein kinase C and vascular smooth muscle contractility: effects of inhibitors and down-regulation. J Pharmacol Exp Ther. 1991 Apr;257(1):134–140. [PubMed] [Google Scholar]
  22. Minneman K. P., Esbenshade T. A. Alpha 1-adrenergic receptor subtypes. Annu Rev Pharmacol Toxicol. 1994;34:117–133. doi: 10.1146/annurev.pa.34.040194.001001. [DOI] [PubMed] [Google Scholar]
  23. Nishizuka Y. Studies and perspectives of protein kinase C. Science. 1986 Jul 18;233(4761):305–312. doi: 10.1126/science.3014651. [DOI] [PubMed] [Google Scholar]
  24. Putney J. W., Jr A model for receptor-regulated calcium entry. Cell Calcium. 1986 Feb;7(1):1–12. doi: 10.1016/0143-4160(86)90026-6. [DOI] [PubMed] [Google Scholar]
  25. Putney J. W., Jr Capacitative calcium entry revisited. Cell Calcium. 1990 Nov-Dec;11(10):611–624. doi: 10.1016/0143-4160(90)90016-n. [DOI] [PubMed] [Google Scholar]
  26. Ryves W. J., Evans A. T., Olivier A. R., Parker P. J., Evans F. J. Activation of the PKC-isotypes alpha, beta 1, gamma, delta and epsilon by phorbol esters of different biological activities. FEBS Lett. 1991 Aug 19;288(1-2):5–9. doi: 10.1016/0014-5793(91)80989-g. [DOI] [PubMed] [Google Scholar]
  27. Seidler N. W., Jona I., Vegh M., Martonosi A. Cyclopiazonic acid is a specific inhibitor of the Ca2+-ATPase of sarcoplasmic reticulum. J Biol Chem. 1989 Oct 25;264(30):17816–17823. [PubMed] [Google Scholar]
  28. Severson D. L., Hee-Cheong M. Diacylglycerol lipase and kinase activities in rabbit aorta and coronary microvessels. Biochem Cell Biol. 1986 Oct;64(10):976–983. doi: 10.1139/o86-130. [DOI] [PubMed] [Google Scholar]
  29. Sorrentino V., Volpe P. Ryanodine receptors: how many, where and why? Trends Pharmacol Sci. 1993 Mar;14(3):98–103. doi: 10.1016/0165-6147(93)90072-r. [DOI] [PubMed] [Google Scholar]
  30. Takai Y., Kishimoto A., Iwasa Y., Kawahara Y., Mori T., Nishizuka Y. Calcium-dependent activation of a multifunctional protein kinase by membrane phospholipids. J Biol Chem. 1979 May 25;254(10):3692–3695. [PubMed] [Google Scholar]
  31. Tamaoki T., Nomoto H., Takahashi I., Kato Y., Morimoto M., Tomita F. Staurosporine, a potent inhibitor of phospholipid/Ca++dependent protein kinase. Biochem Biophys Res Commun. 1986 Mar 13;135(2):397–402. doi: 10.1016/0006-291x(86)90008-2. [DOI] [PubMed] [Google Scholar]
  32. Yang S. G., Saifeddine M., Chuang M., Severson D. L., Hollenberg M. D. Diacylglycerol lipase and the contractile action of epidermal growth factor-urogastrone: evidence for distinct signal pathways in a single strip of gastric smooth muscle. Eur J Pharmacol. 1991 Jul 12;207(3):225–230. doi: 10.1016/0922-4106(91)90034-f. [DOI] [PubMed] [Google Scholar]
  33. de Chaffoy de Courcelles D. C., Roevens P., Van Belle H. R 59 022, a diacylglycerol kinase inhibitor. Its effect on diacylglycerol and thrombin-induced C kinase activation in the intact platelet. J Biol Chem. 1985 Dec 15;260(29):15762–15770. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES