Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Jan;117(1):79–86. doi: 10.1111/j.1476-5381.1996.tb15157.x

Cyclic AMP-elevating agents prolong or inhibit eosinophil survival depending on prior exposure to GM-CSF.

M P Hallsworth 1, M A Giembycz 1, P J Barnes 1, T H Lee 1
PMCID: PMC1909360  PMID: 8825346

Abstract

1. Purified human eosinophils survived for up to 7 days when cultured in vitro in the presence of 1 ng ml-1 granulocyte-macrophage colony stimulating factor (GM-CSF) with a viability of 73%. In the absence of GM-CSF, eosinophil viability decreased after one day in culture, and only 4% of cells were viable by day 4. 2. Culture of eosinophils with cholera toxin produced a concentration-dependent decrease in GM-CSF-induced survival at 7 days (IC50 = 7 ng ml-1) which was associated with a 6 fold increase in the intracellular cyclic AMP concentration. This inhibition of cell survival could be prevented by the addition of the protein kinase A inhibitor, H89 (10(-6)M). 3. When eosinophils were cultured with dibutyryl cyclic AMP, there was a concentration-dependent inhibition of GM-CSF-induced survival at 7 days with an IC50 of 200 microM. The related cyclic nucleotide analogue, dibutyryl cyclic GMP did not inhibit GM-CSF-induced eosinophil survival over the same concentration range. 4. Culture of eosinophils with forskolin, or with the phosphodiesterase inhibitors, rolipram and SK&F94120, had no effect on GM-CSF-induced eosinophil survival at any concentration examined. 5. After 7 days' culture in the absence of GM-CSF, fractionation of eosinophil DNA on agarose gels demonstrated a 'ladder' pattern characteristic of apoptosis. GM-CSF prevented DNA fragmentation and this protection could be overcome by both cholera toxin and dibutyryl cyclic AMP. 6. GM-CSF did not affect intracellular cyclic AMP concentrations in unstimulated eosinophils or in cells stimulated by cholera toxin. Thus, GM-CSF does not apparently increase eosinophil survival by affecting cyclic AMP levels. 7. In the absence of GM-CSF both cholera toxin and dibutyryl cyclic AMP decreased the rate of eosinophil death, when compared to cells cultured with medium alone. The t1/2 values for cell death were 1.63 +/- 0.3, 2.46 +/- 0.3 and 4.62 +/- 1.0 days for cells cultured in the presence of medium, cholera toxin and dibutyryl cyclic AMP respectively. 8. In conclusion, cyclic AMP exerts opposing effects on eosinophil survival depending on prior exposure of the cells to GM-CSF.

Full text

PDF
79

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bourne H. R., Lichtenstein L. M., Melmon K. L. Pharmacologic control of allergic histamine release in vitro: evidence for an inhibitory role of 3',5'-adenosine monophosphate in human leukocytes. J Immunol. 1972 Mar;108(3):695–705. [PubMed] [Google Scholar]
  2. Bousquet J., Chanez P., Lacoste J. Y., Barnéon G., Ghavanian N., Enander I., Venge P., Ahlstedt S., Simony-Lafontaine J., Godard P. Eosinophilic inflammation in asthma. N Engl J Med. 1990 Oct 11;323(15):1033–1039. doi: 10.1056/NEJM199010113231505. [DOI] [PubMed] [Google Scholar]
  3. Burke L. A., Hallsworth M. P., Litchfield T. M., Davidson R., Lee T. H. Identification of the major activity derived from cultured human peripheral blood mononuclear cells, which enhances eosinophil viability, as granulocyte macrophage colony-stimulating factor (GM-CSF). J Allergy Clin Immunol. 1991 Aug;88(2):226–235. doi: 10.1016/0091-6749(91)90333-j. [DOI] [PubMed] [Google Scholar]
  4. Cox J. P., Karnovsky M. L. The depression of phagocytosis by exogenous cyclic nucleotides, prostaglandins, and theophylline. J Cell Biol. 1973 Nov;59(2 Pt 1):480–490. doi: 10.1083/jcb.59.2.480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DUNNILL M. S. The pathology of asthma, with special reference to changes in the bronchial mucosa. J Clin Pathol. 1960 Jan;13:27–33. doi: 10.1136/jcp.13.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dent G., Giembycz M. A., Evans P. M., Rabe K. F., Barnes P. J. Suppression of human eosinophil respiratory burst and cyclic AMP hydrolysis by inhibitors of type IV phosphodiesterase: interaction with the beta adrenoceptor agonist albuterol. J Pharmacol Exp Ther. 1994 Dec;271(3):1167–1174. [PubMed] [Google Scholar]
  7. Dent G., Giembycz M. A., Rabe K. F., Barnes P. J. Inhibition of eosinophil cyclic nucleotide PDE activity and opsonised zymosan-stimulated respiratory burst by 'type IV'-selective PDE inhibitors. Br J Pharmacol. 1991 Jun;103(2):1339–1346. doi: 10.1111/j.1476-5381.1991.tb09790.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Downes C. P., Hawkins P. T., Irvine R. F. Inositol 1,3,4,5-tetrakisphosphate and not phosphatidylinositol 3,4-bisphosphate is the probable precursor of inositol 1,3,4-trisphosphate in agonist-stimulated parotid gland. Biochem J. 1986 Sep 1;238(2):501–506. doi: 10.1042/bj2380501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Durham S. R., Kay A. B. Eosinophils, bronchial hyperreactivity and late-phase asthmatic reactions. Clin Allergy. 1985 Sep;15(5):411–418. doi: 10.1111/j.1365-2222.1985.tb02290.x. [DOI] [PubMed] [Google Scholar]
  10. Franklin W. Treatment of severe asthma. N Engl J Med. 1974 Jun 27;290(26):1469–1472. doi: 10.1056/NEJM197406272902606. [DOI] [PubMed] [Google Scholar]
  11. Frigas E., Gleich G. J. The eosinophil and the pathophysiology of asthma. J Allergy Clin Immunol. 1986 Apr;77(4):527–537. doi: 10.1016/0091-6749(86)90341-6. [DOI] [PubMed] [Google Scholar]
  12. Hansel T. T., De Vries I. J., Iff T., Rihs S., Wandzilak M., Betz S., Blaser K., Walker C. An improved immunomagnetic procedure for the isolation of highly purified human blood eosinophils. J Immunol Methods. 1991 Dec 15;145(1-2):105–110. doi: 10.1016/0022-1759(91)90315-7. [DOI] [PubMed] [Google Scholar]
  13. Harvath L., Robbins J. D., Russell A. A., Seamon K. B. cAMP and human neutrophil chemotaxis. Elevation of cAMP differentially affects chemotactic responsiveness. J Immunol. 1991 Jan 1;146(1):224–232. [PubMed] [Google Scholar]
  14. Hatzelmann A., Tenor H., Schudt C. Differential effects of non-selective and selective phosphodiesterase inhibitors on human eosinophil functions. Br J Pharmacol. 1995 Feb;114(4):821–831. doi: 10.1111/j.1476-5381.1995.tb13278.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Horn B. R., Robin E. D., Theodore J., Van Kessel A. Total eosinophil counts in the management of bronchial asthma. N Engl J Med. 1975 May 29;292(22):1152–1155. doi: 10.1056/NEJM197505292922204. [DOI] [PubMed] [Google Scholar]
  16. Howell C. J., Pujol J. L., Crea A. E., Davidson R., Gearing A. J., Godard P., Lee T. H. Identification of an alveolar macrophage-derived activity in bronchial asthma that enhances leukotriene C4 generation by human eosinophils stimulated by ionophore A23187 as a granulocyte-macrophage colony-stimulating factor. Am Rev Respir Dis. 1989 Nov;140(5):1340–1347. doi: 10.1164/ajrccm/140.5.1340. [DOI] [PubMed] [Google Scholar]
  17. Ignarro L. J., George W. J. Mediation of immunologic discharge of lysosomal enzymes from human neutrophils by guanosine 3',5'-monophosphate. Requirement of calcium, and inhibition by adenosine 3',5'-monophosphate. J Exp Med. 1974 Jul 1;140(1):225–238. doi: 10.1084/jem.140.1.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kato H., Ishitoya J., Takenawa T. Inhibition of inositol phospholipids metabolism and calcium mobilization by cyclic AMP-increasing agents and phorbol ester in neutrophils. Biochem Biophys Res Commun. 1986 Sep 30;139(3):1272–1278. doi: 10.1016/s0006-291x(86)80315-1. [DOI] [PubMed] [Google Scholar]
  19. Kita H., Abu-Ghazaleh R. I., Gleich G. J., Abraham R. T. Regulation of Ig-induced eosinophil degranulation by adenosine 3',5'-cyclic monophosphate. J Immunol. 1991 Apr 15;146(8):2712–2718. [PubMed] [Google Scholar]
  20. Lanotte M., Riviere J. B., Hermouet S., Houge G., Vintermyr O. K., Gjertsen B. T., Døskeland S. O. Programmed cell death (apoptosis) is induced rapidly and with positive cooperativity by activation of cyclic adenosine monophosphate-kinase I in a myeloid leukemia cell line. J Cell Physiol. 1991 Jan;146(1):73–80. doi: 10.1002/jcp.1041460110. [DOI] [PubMed] [Google Scholar]
  21. Lincoln T. M., Cornwell T. L., Taylor A. E. cGMP-dependent protein kinase mediates the reduction of Ca2+ by cAMP in vascular smooth muscle cells. Am J Physiol. 1990 Mar;258(3 Pt 1):C399–C407. doi: 10.1152/ajpcell.1990.258.3.C399. [DOI] [PubMed] [Google Scholar]
  22. Lowell F. C. Clinical aspects of eosinophilia in atopic disease. JAMA. 1967 Nov 27;202(9):875–878. [PubMed] [Google Scholar]
  23. Marini M., Avoni E., Hollemborg J., Mattoli S. Cytokine mRNA profile and cell activation in bronchoalveolar lavage fluid from nonatopic patients with symptomatic asthma. Chest. 1992 Sep;102(3):661–669. doi: 10.1378/chest.102.3.661. [DOI] [PubMed] [Google Scholar]
  24. Mattoli S., Mattoso V. L., Soloperto M., Allegra L., Fasoli A. Cellular and biochemical characteristics of bronchoalveolar lavage fluid in symptomatic nonallergic asthma. J Allergy Clin Immunol. 1991 Apr;87(4):794–802. doi: 10.1016/0091-6749(91)90125-8. [DOI] [PubMed] [Google Scholar]
  25. McConkey D. J., Orrenius S., Jondal M. Agents that elevate cAMP stimulate DNA fragmentation in thymocytes. J Immunol. 1990 Aug 15;145(4):1227–1230. [PubMed] [Google Scholar]
  26. Miller S. A., Dykes D. D., Polesky H. F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988 Feb 11;16(3):1215–1215. doi: 10.1093/nar/16.3.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Monaco L., Vicini E., Conti M. Structure of two rat genes coding for closely related rolipram-sensitive cAMP phosphodiesterases. Multiple mRNA variants originate from alternative splicing and multiple start sites. J Biol Chem. 1994 Jan 7;269(1):347–357. [PubMed] [Google Scholar]
  28. Munoz N. M., Vita A. J., Neeley S. P., McAllister K., Spaethe S. M., White S. R., Leff A. R. Beta adrenergic modulation of formyl-methionine-leucine-phenylalanine-stimulated secretion of eosinophil peroxidase and leukotriene C4. J Pharmacol Exp Ther. 1994 Jan;268(1):139–143. [PubMed] [Google Scholar]
  29. Nielson C. P. Beta-adrenergic modulation of the polymorphonuclear leukocyte respiratory burst is dependent upon the mechanism of cell activation. J Immunol. 1987 Oct 1;139(7):2392–2397. [PubMed] [Google Scholar]
  30. Nourshargh S., Hoult J. R. Inhibition of human neutrophil degranulation by forskolin in the presence of phosphodiesterase inhibitors. Eur J Pharmacol. 1986 Mar 18;122(2):205–212. doi: 10.1016/0014-2999(86)90104-4. [DOI] [PubMed] [Google Scholar]
  31. Rivkin I., Rosenblatt J., Becker E. L. The role of cyclic AMP in the chemotactic responsiveness and spontaneous motility of rabbit peritoneal neutrophils. The inhibition of neutrophil movement and the elevation of cyclic AMP levels by catecholamines, prostaglandins, theophylline and cholera toxin. J Immunol. 1975 Oct;115(4):1126–1134. [PubMed] [Google Scholar]
  32. Robinson D. S., Ying S., Bentley A. M., Meng Q., North J., Durham S. R., Kay A. B., Hamid Q. Relationships among numbers of bronchoalveolar lavage cells expressing messenger ribonucleic acid for cytokines, asthma symptoms, and airway methacholine responsiveness in atopic asthma. J Allergy Clin Immunol. 1993 Sep;92(3):397–403. doi: 10.1016/0091-6749(93)90118-y. [DOI] [PubMed] [Google Scholar]
  33. Rothman B. L., Kennure N., Kelley K. A., Katz M., Aune T. M. Elevation of intracellular cAMP in human T lymphocytes by an anti-CD44 mAb. J Immunol. 1993 Dec 1;151(11):6036–6042. [PubMed] [Google Scholar]
  34. Schwartz J. P., Passonneau J. V. Cyclic AMP-mediated induction of the cyclic AMP phosphodiesterase of C-6 glioma cells. Proc Natl Acad Sci U S A. 1974 Oct;71(10):3844–3848. doi: 10.1073/pnas.71.10.3844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Seamon K. B., Padgett W., Daly J. W. Forskolin: unique diterpene activator of adenylate cyclase in membranes and in intact cells. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3363–3367. doi: 10.1073/pnas.78.6.3363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sedgwick J. B., Berube M. L., Zurier R. B. Stimulus-dependent inhibition of superoxide generation by prostaglandins. Clin Immunol Immunopathol. 1985 Feb;34(2):205–215. doi: 10.1016/0090-1229(85)90025-x. [DOI] [PubMed] [Google Scholar]
  37. Smith J. W., Steiner A. L., Newberry W. M., Jr, Parker C. W. Cyclic adenosine 3',5'-monophosphate in human lymphocytes. Alterations after phytohemagglutinin stimulation. J Clin Invest. 1971 Feb;50(2):432–441. doi: 10.1172/JCI106510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Souness J. E., Carter C. M., Diocee B. K., Hassall G. A., Wood L. J., Turner N. C. Characterization of guinea-pig eosinophil phosphodiesterase activity. Assessment of its involvement in regulating superoxide generation. Biochem Pharmacol. 1991 Jul 25;42(4):937–945. doi: 10.1016/0006-2952(91)90056-b. [DOI] [PubMed] [Google Scholar]
  39. Souness J. E., Villamil M. E., Scott L. C., Tomkinson A., Giembycz M. A., Raeburn D. Possible role of cyclic AMP phosphodiesterases in the actions of ibudilast on eosinophil thromboxane generation and airways smooth muscle tone. Br J Pharmacol. 1994 Apr;111(4):1081–1088. doi: 10.1111/j.1476-5381.1994.tb14855.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sousa A. R., Poston R. N., Lane S. J., Nakhosteen J. A., Lee T. H. Detection of GM-CSF in asthmatic bronchial epithelium and decrease by inhaled corticosteroids. Am Rev Respir Dis. 1993 Jun;147(6 Pt 1):1557–1561. doi: 10.1164/ajrccm/147.6_Pt_1.1557. [DOI] [PubMed] [Google Scholar]
  41. Stern M., Meagher L., Savill J., Haslett C. Apoptosis in human eosinophils. Programmed cell death in the eosinophil leads to phagocytosis by macrophages and is modulated by IL-5. J Immunol. 1992 Jun 1;148(11):3543–3549. [PubMed] [Google Scholar]
  42. Tai P. C., Sun L., Spry C. J. Effects of IL-5, granulocyte/macrophage colony-stimulating factor (GM-CSF) and IL-3 on the survival of human blood eosinophils in vitro. Clin Exp Immunol. 1991 Aug;85(2):312–316. doi: 10.1111/j.1365-2249.1991.tb05725.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Takenawa T., Ishitoya J., Nagai Y. Inhibitory effect of prostaglandin E2, forskolin, and dibutyryl cAMP on arachidonic acid release and inositol phospholipid metabolism in guinea pig neutrophils. J Biol Chem. 1986 Jan 25;261(3):1092–1098. [PubMed] [Google Scholar]
  44. Taylor K. J., Luksza A. R. Peripheral blood eosinophil counts and bronchial responsiveness. Thorax. 1987 Jun;42(6):452–456. doi: 10.1136/thx.42.6.452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Torphy T. J., Zhou H. L., Cieslinski L. B. Stimulation of beta adrenoceptors in a human monocyte cell line (U937) up-regulates cyclic AMP-specific phosphodiesterase activity. J Pharmacol Exp Ther. 1992 Dec;263(3):1195–1205. [PubMed] [Google Scholar]
  46. Tyagi S. R., Olson S. C., Burnham D. N., Lambeth J. D. Cyclic AMP-elevating agents block chemoattractant activation of diradylglycerol generation by inhibiting phospholipase D activation. J Biol Chem. 1991 Feb 25;266(6):3498–3504. [PubMed] [Google Scholar]
  47. Williams G. T., Smith C. A., Spooncer E., Dexter T. M., Taylor D. R. Haemopoietic colony stimulating factors promote cell survival by suppressing apoptosis. Nature. 1990 Jan 4;343(6253):76–79. doi: 10.1038/343076a0. [DOI] [PubMed] [Google Scholar]
  48. Wyllie A. H. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature. 1980 Apr 10;284(5756):555–556. doi: 10.1038/284555a0. [DOI] [PubMed] [Google Scholar]
  49. Yousefi S., Green D. R., Blaser K., Simon H. U. Protein-tyrosine phosphorylation regulates apoptosis in human eosinophils and neutrophils. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):10868–10872. doi: 10.1073/pnas.91.23.10868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. van der Bruggen T., Kok P. T., Raaijmakers J. A., Verhoeven A. J., Kessels R. G., Lammers J. W., Koenderman L. Cytokine priming of the respiratory burst in human eosinophils is Ca2+ independent and accompanied by induction of tyrosine kinase activity. J Leukoc Biol. 1993 Apr;53(4):347–353. doi: 10.1002/jlb.53.4.347. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES