Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Jan;117(1):21–28. doi: 10.1111/j.1476-5381.1996.tb15149.x

Multiple 5-HT receptors in the guinea-pig superior cervical ganglion.

C J Watkins 1, N R Newberry 1
PMCID: PMC1909384  PMID: 8825338

Abstract

1. We have studied the pharmacology of the depolarization by 5-hydroxytryptamine (5-HT) of the guinea-pig isolated superior cervical ganglion (SCG) using the grease-gap technique. We studied the effects of selective and non-selective antagonists on the responses to 5-HT and other 5-HT receptor agonists. 2. We have extended the pharmacology of the 5-HT3 receptor in this preparation by studying the effects of granisetron, BRL 46470 and mianserin on the concentration-response curve (CRC) to 2-methyl-5-HT. As with other 5-HT3 receptor antagonists, these compounds exhibited a lower affinity for guinea-pig 5-HT3 receptors than for rat 5-HT3 receptors. 3. We have confirmed that low concentrations of 5-HT (< or = 1 microM) mediate ketanserin-sensitive responses and higher concentrations of 5-HT also recruit 5-HT3 receptors. The responses to low concentrations of 5-HT were antagonized by low concentrations of ketanserin, spiperone, mianserin, DOI and LSD indicating probably mediation by 5-HT2A receptors. At high concentrations, the hallucinogen, DOI, but not LSD, evoked a ketanserin-sensitive depolarization. 4. Although mianserin could bind to the 5-HT2A receptors in this preparation, we could not demonstrate a down-regulation of depolarizations evoked by these receptors after a 10 day oral treatment with mianserin (10 mg kg-1, daily). 5. 5-Carboxamidotryptamine (5-CT) evoked a prolonged depolarization. Although high concentrations of 5-CT (> or = microM) appeared to activate 5-HT2A receptors, lower concentrations of 5-CT evoked a response with a distinct pharmacology. After studying the action of 20 selective and non-selective 5-HT receptor ligands we believe that this response may be mediated by a novel receptor; but its pharmacology is closest to that of receptors in the 5-HT2 receptor family. Like 5-CT, 5-HT (3-300 microM) could evoke an LSD-sensitive response in the presence of the 5-HT2 receptor antagonist, ketanserin and the 5-HT3 receptor antagonist, tropisetron (all 1 microM). 6. We conclude that 5-HT activates three pharmacologically distinct receptors to depolarize the guinea-pig SCG. Low concentrations of 5-HT appear to activate 5-HT2A receptors. Higher concentrations of 5-HT also activate 5-HT3 receptors and a possible novel 5-HT receptor. The novel receptor could be a species homologue of a 5-HT2 receptor or an, as yet, unclassified 5-HT receptor.

Full text

PDF
21

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azami J., Fozard J. R., Round A. A., Wallis D. I. The depolarizing action of 5-hydroxytryptamine on rabbit vagal primary afferent and sympathetic neurones and its selective blockade by MDL 72222. Naunyn Schmiedebergs Arch Pharmacol. 1985 Feb;328(4):423–429. doi: 10.1007/BF00692911. [DOI] [PubMed] [Google Scholar]
  2. Baxter G., Kennett G., Blaney F., Blackburn T. 5-HT2 receptor subtypes: a family re-united? Trends Pharmacol Sci. 1995 Mar;16(3):105–110. doi: 10.1016/s0165-6147(00)88991-9. [DOI] [PubMed] [Google Scholar]
  3. Blackburn T. P., Baxter G. S., Kennett G. A., King F. D., Piper D. C., Sanger G. J., Thomas D. R., Upton N., Wood M. D. BRL 46470A: a highly potent, selective and long acting 5-HT3 receptor antagonist with anxiolytic-like properties. Psychopharmacology (Berl) 1993;110(3):257–264. doi: 10.1007/BF02251279. [DOI] [PubMed] [Google Scholar]
  4. Boess F. G., Martin I. L. Molecular biology of 5-HT receptors. Neuropharmacology. 1994 Mar-Apr;33(3-4):275–317. doi: 10.1016/0028-3908(94)90059-0. [DOI] [PubMed] [Google Scholar]
  5. Bond R. A., Ornstein A. G., Clarke D. E. Unsurmountable antagonism to 5-hydroxytryptamine in rat kidney results from pseudoirreversible inhibition rather than multiple receptors or allosteric receptor modulation. J Pharmacol Exp Ther. 1989 May;249(2):401–410. [PubMed] [Google Scholar]
  6. Cadogan A. K., Marsden C. A., Tulloch I., Kendall D. A. Evidence that chronic administration of paroxetine or fluoxetine enhances 5-HT2 receptor function in the brain of the guinea pig. Neuropharmacology. 1993 Mar;32(3):249–256. doi: 10.1016/0028-3908(93)90108-f. [DOI] [PubMed] [Google Scholar]
  7. Connell L. A., Wallis D. I. 5-Hydroxytryptamine depolarizes neonatal rat motorneurones through a receptor unrelated to an identified binding site. Neuropharmacology. 1989 Jun;28(6):625–634. doi: 10.1016/0028-3908(89)90142-1. [DOI] [PubMed] [Google Scholar]
  8. Gerschenfeld H. M., Paupardin-Tritsch D. Ionic mechanisms and receptor properties underlying the responses of molluscan neurones to 5-hydroxytryptamine. J Physiol. 1974 Dec;243(2):427–456. doi: 10.1113/jphysiol.1974.sp010761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gilbert M. J., Newberry N. R. A 5-HT1-like receptor mediates a sympathetic ganglionic hyperpolarization. Eur J Pharmacol. 1987 Dec 15;144(3):385–388. doi: 10.1016/0014-2999(87)90393-1. [DOI] [PubMed] [Google Scholar]
  10. Gozlan H., El Mestikawy S., Pichat L., Glowinski J., Hamon M. Identification of presynaptic serotonin autoreceptors using a new ligand: 3H-PAT. Nature. 1983 Sep 8;305(5930):140–142. doi: 10.1038/305140a0. [DOI] [PubMed] [Google Scholar]
  11. Heuring R. E., Peroutka S. J. Characterization of a novel 3H-5-hydroxytryptamine binding site subtype in bovine brain membranes. J Neurosci. 1987 Mar;7(3):894–903. doi: 10.1523/JNEUROSCI.07-03-00894.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hoyer D., Clarke D. E., Fozard J. R., Hartig P. R., Martin G. R., Mylecharane E. J., Saxena P. R., Humphrey P. P. International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol Rev. 1994 Jun;46(2):157–203. [PubMed] [Google Scholar]
  13. Hyttel J. Pharmacological characterization of selective serotonin reuptake inhibitors (SSRIs). Int Clin Psychopharmacol. 1994 Mar;9 (Suppl 1):19–26. doi: 10.1097/00004850-199403001-00004. [DOI] [PubMed] [Google Scholar]
  14. Ireland S. J., Jordan C. C. Pharmacological characterization of 5-hydroxytryptamine-induced hyperpolarization of the rat superior cervical ganglion. Br J Pharmacol. 1987 Oct;92(2):417–427. doi: 10.1111/j.1476-5381.1987.tb11338.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ireland S. J., Straughan D. W., Tyers M. B. Influence of 5-hydroxytryptamine uptake on the apparent 5-hydroxytryptamine antagonist potency of metoclopramide in the rat isolated superior cervical ganglion. Br J Pharmacol. 1987 Jan;90(1):151–160. doi: 10.1111/j.1476-5381.1987.tb16835.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Julius D., Huang K. N., Livelli T. J., Axel R., Jessell T. M. The 5HT2 receptor defines a family of structurally distinct but functionally conserved serotonin receptors. Proc Natl Acad Sci U S A. 1990 Feb;87(3):928–932. doi: 10.1073/pnas.87.3.928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kennett G. A., Wood M. D., Glen A., Grewal S., Forbes I., Gadre A., Blackburn T. P. In vivo properties of SB 200646A, a 5-HT2C/2B receptor antagonist. Br J Pharmacol. 1994 Mar;111(3):797–802. doi: 10.1111/j.1476-5381.1994.tb14808.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Knoper S. R., Matsumoto S. G., Kreulen D. L. Response to 5-hydroxytryptamine on neurons of guinea pig celiac and inferior mesenteric ganglia in primary culture. Life Sci. 1992;51(9):703–710. doi: 10.1016/0024-3205(92)90244-j. [DOI] [PubMed] [Google Scholar]
  19. Leysen J. E., Awouters F., Kennis L., Laduron P. M., Vandenberk J., Janssen P. A. Receptor binding profile of R 41 468, a novel antagonist at 5-HT2 receptors. Life Sci. 1981 Mar 2;28(9):1015–1022. doi: 10.1016/0024-3205(81)90747-5. [DOI] [PubMed] [Google Scholar]
  20. Matsumoto S. G., Gruener R. P., Kreulen D. L. Neurotransmitter properties of guinea-pig sympathetic neurons grown in dissociated cell culture--I. Adult neurons. Neuroscience. 1993 Dec;57(4):1135–1145. doi: 10.1016/0306-4522(93)90055-k. [DOI] [PubMed] [Google Scholar]
  21. Middlemiss D. N., Fozard J. R. 8-Hydroxy-2-(di-n-propylamino)-tetralin discriminates between subtypes of the 5-HT1 recognition site. Eur J Pharmacol. 1983 May 20;90(1):151–153. doi: 10.1016/0014-2999(83)90230-3. [DOI] [PubMed] [Google Scholar]
  22. Nedergaard S., Flatman J. A., Engberg I. Excitation of substantia nigra pars compacta neurones by 5-hydroxy-tryptamine in-vitro. Neuroreport. 1991 Jun;2(6):329–332. doi: 10.1097/00001756-199106000-00007. [DOI] [PubMed] [Google Scholar]
  23. Newberry N. R., Cheshire S. H., Gilbert M. J. Evidence that the 5-HT3 receptors of the rat, mouse and guinea-pig superior cervical ganglion may be different. Br J Pharmacol. 1991 Mar;102(3):615–620. doi: 10.1111/j.1476-5381.1991.tb12221.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Newberry N. R., Gilbert M. J. 5-Hydroxytryptamine evokes three distinct responses on the rat superior cervical ganglion in vitro. Eur J Pharmacol. 1989 Mar 21;162(2):197–205. doi: 10.1016/0014-2999(89)90282-3. [DOI] [PubMed] [Google Scholar]
  25. Newberry N. R., Watkins C. J., Sprosen T. S., Blackburn T. P., Grahame-Smith D. G., Leslie R. A. BRL 46470 potently antagonizes neural responses activated by 5-HT3 receptors. Neuropharmacology. 1993 Aug;32(8):729–735. doi: 10.1016/0028-3908(93)90180-b. [DOI] [PubMed] [Google Scholar]
  26. Peroutka S. J., Snyder S. H. Multiple serotonin receptors: differential binding of [3H]5-hydroxytryptamine, [3H]lysergic acid diethylamide and [3H]spiroperidol. Mol Pharmacol. 1979 Nov;16(3):687–699. [PubMed] [Google Scholar]
  27. Richardson B. P., Engel G., Donatsch P., Stadler P. A. Identification of serotonin M-receptor subtypes and their specific blockade by a new class of drugs. Nature. 1985 Jul 11;316(6024):126–131. doi: 10.1038/316126a0. [DOI] [PubMed] [Google Scholar]
  28. Roberts K. E., Newberry N. R. A pharmacological study of the responses induced by muscarinic agonists on the isolated superior cervical ganglion of the guinea-pig. Eur J Pharmacol. 1990 Sep 21;186(2-3):257–265. doi: 10.1016/0014-2999(90)90441-8. [DOI] [PubMed] [Google Scholar]
  29. Sahin-Erdemli I., Hoyer D., Stoll A., Seiler M. P., Schoeffter P. 5-HT1-like receptors mediate 5-hydroxytryptamine-induced contraction of guinea-pig isolated iliac artery. Br J Pharmacol. 1991 Feb;102(2):386–390. doi: 10.1111/j.1476-5381.1991.tb12183.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sanders-Bush E. Adaptive regulation of central serotonin receptors linked to phosphoinositide hydrolysis. Neuropsychopharmacology. 1990 Oct-Dec;3(5-6):411–416. [PubMed] [Google Scholar]
  31. Sanger G. J., Nelson D. R. Selective and functional 5-hydroxytryptamine3 receptor antagonism by BRL 43694 (granisetron). Eur J Pharmacol. 1989 Jan 10;159(2):113–124. doi: 10.1016/0014-2999(89)90695-x. [DOI] [PubMed] [Google Scholar]
  32. Starkey S. J., Skingle M. 5-HT1D as well as 5-HT1A autoreceptors modulate 5-HT release in the guinea-pig dorsal raphé nucleus. Neuropharmacology. 1994 Mar-Apr;33(3-4):393–402. doi: 10.1016/0028-3908(94)90069-8. [DOI] [PubMed] [Google Scholar]
  33. TRENDELENBURG U. The action of 5-hydroxytryptamine on the nictitating membrane and on the superior cervical ganglion of the cat. Br J Pharmacol Chemother. 1956 Mar;11(1):74–80. doi: 10.1111/j.1476-5381.1956.tb01031.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Toth M., Shenk T. Antagonist-mediated down-regulation of 5-hydroxytryptamine type 2 receptor gene expression: modulation of transcription. Mol Pharmacol. 1994 Jun;45(6):1095–1100. [PubMed] [Google Scholar]
  35. Tsou A. P., Kosaka A., Bach C., Zuppan P., Yee C., Tom L., Alvarez R., Ramsey S., Bonhaus D. W., Stefanich E. Cloning and expression of a 5-hydroxytryptamine7 receptor positively coupled to adenylyl cyclase. J Neurochem. 1994 Aug;63(2):456–464. doi: 10.1046/j.1471-4159.1994.63020456.x. [DOI] [PubMed] [Google Scholar]
  36. Wade P. R., Tamir H., Kirchgessner A. L., Gershon M. D. Analysis of the role of 5-HT in the enteric nervous system using anti-idiotopic antibodies to 5-HT receptors. Am J Physiol. 1994 Mar;266(3 Pt 1):G403–G416. doi: 10.1152/ajpgi.1994.266.3.G403. [DOI] [PubMed] [Google Scholar]
  37. Wallis D. I., Dun N. J. A comparison of fast and slow depolarizations evoked by 5-HT in guinea-pig coeliac ganglion cells in vitro. Br J Pharmacol. 1988 Jan;93(1):110–120. doi: 10.1111/j.1476-5381.1988.tb11411.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wallis D. I., North R. A. The action of 5-hydroxytryptamine on single neurones of the rabbit superior cervical ganglion. Neuropharmacology. 1978 Dec;17(12):1023–1028. doi: 10.1016/0028-3908(78)90028-x. [DOI] [PubMed] [Google Scholar]
  39. Wardle K. A., Ellis E. S., Baxter G. S., Kennett G. A., Gaster L. M., Sanger G. J. The effects of SB 204070, a highly potent and selective 5-HT4 receptor antagonist, on guinea-pig distal colon. Br J Pharmacol. 1994 Jul;112(3):789–794. doi: 10.1111/j.1476-5381.1994.tb13148.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Watts S. W., Cohen M. L., Mooney P. Q., Johnson B. G., Schoepp D. D., Baez M. Disruption of potential alpha-helix in the G loop of the guinea pig 5-hydroxytryptamine2 receptor does not prevent receptor coupling to phosphoinositide hydrolysis. J Neurochem. 1994 Mar;62(3):934–943. doi: 10.1046/j.1471-4159.1994.62030934.x. [DOI] [PubMed] [Google Scholar]
  41. Wood M. D., Thomas D. R., Watkins C. J., Newberry N. R. Stereoselective interaction of mianserin with 5-HT3 receptors. J Pharm Pharmacol. 1993 Aug;45(8):711–714. doi: 10.1111/j.2042-7158.1993.tb07094.x. [DOI] [PubMed] [Google Scholar]
  42. Zifa E., Fillion G. 5-Hydroxytryptamine receptors. Pharmacol Rev. 1992 Sep;44(3):401–458. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES