Abstract
1. Most neurotransmitters are inactivated by uptake into presynaptic nerve terminals and into glial cells. We recently provided evidence for uptake of amines in postsynaptic neurones. Uptake was evident at nanomolar concentrations of prazosin, but at concentrations of unlabelled prazosin greater than 10(-7) M, there was a further activation of uptake, manifested by a paradoxical increase in accumulation of the radioligand. We have now studied further characteristics of amine uptake in immortalised gonadotrophin-releasing hormone (GnRH) neurones. Control cells included SK-N-SH neuroblastoma cells (which possess presynaptic type amine transporters) and non-neuronal (COS-7) cells. 2. [3H]-prazosin bound to intact GnRH cells and was displaced by unlabelled prazosin in concentrations of 10(-9) to 10(-7) M. However, at higher concentrations of unlabelled prazosin, there was an increase in apparent [3H]-prazosin binding, as we had previously described. This paradoxical increase in accumulation of the radioligand was abolished by desipramine. 3. Desipramine had no effect on the association of prazosin with COS-7 cells. There was no paradoxical increase in accumulation of [3H]-prazosin in COS-7 cells, indicating that this effect requires the presence of a desipramine-blockable uptake process. 4. The increase in binding of the radioligand that was observed in the GnRH cells is not a general property of neuronal transporters; in SK-N-SH cells, there was no increase in accumulation of (-)-[3H]-noradrenaline in the presence of concentrations of unlabelled (-)-noradrenaline greater than 10(-7) M. 5. The uptake of prazosin and the increase in accumulation of [3H]-prazosin were abolished in the cold, indicating that this is an active, energy-requiring process. 6. Desipramine-sensitive uptake of prazosin was demonstrable in the GnRH cells in the absence of sodium. Further, the Na+/K(+)-ATPase inhibitor, vanadate, abolished noradrenaline uptake in SK-N-SH cells but had no effect on prazosin uptake in GnRH cells. Thus, the uptake of prazosin does not derive its energy from the sodium pump. 7. Prazosin uptake was inhibited by the V-ATPase inhibitor bafilomycin A1, the H+/Na+ ionophore, monensin and the organic base, chloroquine, indicating that uptake derives its energy from a proton pump. In contrast to other proton-dependent amine transporters, the uptake of prazosin was unaffected by reserpine. 8. Increasing extracellular pH did not increase the uptake of prazosin into GnRH cells, indicating that it is unlikely to be due to non-specific diffusion and concentration of a lysosomotropic drug into intracellular acidic particles. 9. The uptake of prazosin was unaffected by steroid hormones. 10. In COS-7 cells transfected with alpha 1-adrenoceptor cDNA, [3H]-prazosin was displaced by unlabelled prazosin without causing an increase in binding of the radioligand. This indicated that the increase in accumulation of the radioligand is unlikely to be due simply to some function of alpha 1-adrenoceptors. 11. Thus, peptidergic neurones possess an uptake process with properties that are distinguishable from known amine transporters.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alabaster V. A., Campbell S. F., Danilewicz J. C., Greengrass C. W., Plews R. M. 2,4-Diamino-6,7-dimethoxyquinazolines. 2. 2-(4-Carbamoylpiperidino) derivatives as alpha 1-adrenoceptor antagonists and antihypertensive agents. J Med Chem. 1987 Jun;30(6):999–1003. doi: 10.1021/jm00389a007. [DOI] [PubMed] [Google Scholar]
- Axelrod J. Noradrenaline: fate and control of its biosynthesis. Science. 1971 Aug 13;173(3997):598–606. doi: 10.1126/science.173.3997.598. [DOI] [PubMed] [Google Scholar]
- Bashford C. L., Casey R. P., Radda G. K., Ritchie G. A. The effect of uncouplers on catecholamine incorporation by vesicles of chromaffin granules. Biochem J. 1975 Apr;148(1):153–155. doi: 10.1042/bj1480153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Biedler J. L., Helson L., Spengler B. A. Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res. 1973 Nov;33(11):2643–2652. [PubMed] [Google Scholar]
- Bouvier M., Szatkowski M., Amato A., Attwell D. The glial cell glutamate uptake carrier countertransports pH-changing anions. Nature. 1992 Dec 3;360(6403):471–474. doi: 10.1038/360471a0. [DOI] [PubMed] [Google Scholar]
- Bowman E. J., Siebers A., Altendorf K. Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7972–7976. doi: 10.1073/pnas.85.21.7972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cantley L. C., Jr, Resh M. D., Guidotti G. Vanadate inhibits the red cell (Na+, K+) ATPase from the cytoplasmic side. Nature. 1978 Apr 6;272(5653):552–554. doi: 10.1038/272552a0. [DOI] [PubMed] [Google Scholar]
- Erickson J. D., Eiden L. E., Hoffman B. J. Expression cloning of a reserpine-sensitive vesicular monoamine transporter. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10993–10997. doi: 10.1073/pnas.89.22.10993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gluzman Y. SV40-transformed simian cells support the replication of early SV40 mutants. Cell. 1981 Jan;23(1):175–182. doi: 10.1016/0092-8674(81)90282-8. [DOI] [PubMed] [Google Scholar]
- Henn F. A., Hamberger A. Glial cell function: uptake of transmitter substances. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2686–2690. doi: 10.1073/pnas.68.11.2686. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hösli L., Hösli E. Action and uptake of neurotransmitters in CNS tissue culture. Rev Physiol Biochem Pharmacol. 1978;81:135–188. doi: 10.1007/BFb0034093. [DOI] [PubMed] [Google Scholar]
- Iversen L. L., Kravitz E. A. Sodium dependence of transmitter uptake at adrenergic nerve terminals. Mol Pharmacol. 1966 Jul;2(4):360–362. [PubMed] [Google Scholar]
- Iversen L. L., Salt P. J. Inhibition of catecholamine Uptake-2 by steroids in the isolated rat heart. Br J Pharmacol. 1970 Nov;40(3):528–530. doi: 10.1111/j.1476-5381.1970.tb10637.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimelberg H. K., Pelton E. W., 2nd High-affinity uptake of [3H]norepinephrine by primary astrocyte cultures and its inhibition by tricyclic antidepressants. J Neurochem. 1983 May;40(5):1265–1270. doi: 10.1111/j.1471-4159.1983.tb13565.x. [DOI] [PubMed] [Google Scholar]
- Krsmanović L. Z., Stojilković S. S., Merelli F., Dufour S. M., Virmani M. A., Catt K. J. Calcium signaling and episodic secretion of gonadotropin-releasing hormone in hypothalamic neurons. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8462–8466. doi: 10.1073/pnas.89.18.8462. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liposits Z., Merchenthaler I., Wetsel W. C., Reid J. J., Mellon P. L., Weiner R. I., Negro-Vilar A. Morphological characterization of immortalized hypothalamic neurons synthesizing luteinizing hormone-releasing hormone. Endocrinology. 1991 Sep;129(3):1575–1583. doi: 10.1210/endo-129-3-1575. [DOI] [PubMed] [Google Scholar]
- Liu Y., Peter D., Roghani A., Schuldiner S., Privé G. G., Eisenberg D., Brecha N., Edwards R. H. A cDNA that suppresses MPP+ toxicity encodes a vesicular amine transporter. Cell. 1992 Aug 21;70(4):539–551. doi: 10.1016/0092-8674(92)90425-c. [DOI] [PubMed] [Google Scholar]
- Marini A. M., Lipsky R. H., Schwartz J. P., Kopin I. J. Accumulation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in cultured cerebellar astrocytes. J Neurochem. 1992 Apr;58(4):1250–1258. doi: 10.1111/j.1471-4159.1992.tb11336.x. [DOI] [PubMed] [Google Scholar]
- Maxfield F. R. Weak bases and ionophores rapidly and reversibly raise the pH of endocytic vesicles in cultured mouse fibroblasts. J Cell Biol. 1982 Nov;95(2 Pt 1):676–681. doi: 10.1083/jcb.95.2.676. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mellon P. L., Windle J. J., Goldsmith P. C., Padula C. A., Roberts J. L., Weiner R. I. Immortalization of hypothalamic GnRH neurons by genetically targeted tumorigenesis. Neuron. 1990 Jul;5(1):1–10. doi: 10.1016/0896-6273(90)90028-e. [DOI] [PubMed] [Google Scholar]
- Nelson N. Structure and pharmacology of the proton-ATPases. Trends Pharmacol Sci. 1991 Feb;12(2):71–75. doi: 10.1016/0165-6147(91)90501-i. [DOI] [PubMed] [Google Scholar]
- Ohkuma S., Poole B. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3327–3331. doi: 10.1073/pnas.75.7.3327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pacholczyk T., Blakely R. D., Amara S. G. Expression cloning of a cocaine- and antidepressant-sensitive human noradrenaline transporter. Nature. 1991 Mar 28;350(6316):350–354. doi: 10.1038/350350a0. [DOI] [PubMed] [Google Scholar]
- Pines G., Danbolt N. C., Bjørås M., Zhang Y., Bendahan A., Eide L., Koepsell H., Storm-Mathisen J., Seeberg E., Kanner B. I. Cloning and expression of a rat brain L-glutamate transporter. Nature. 1992 Dec 3;360(6403):464–467. doi: 10.1038/360464a0. [DOI] [PubMed] [Google Scholar]
- Pressman B. C., Fahim M. Pharmacology and toxicology of the monovalent carboxylic ionophores. Annu Rev Pharmacol Toxicol. 1982;22:465–490. doi: 10.1146/annurev.pa.22.040182.002341. [DOI] [PubMed] [Google Scholar]
- Salt P. J. Inhibition of noradrenaline uptake 2 in the isolated rat heart by steroids, clonidine and methoxylated phenylethylamines. Eur J Pharmacol. 1972 Dec;20(3):329–340. doi: 10.1016/0014-2999(72)90194-x. [DOI] [PubMed] [Google Scholar]
- Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
- Storck T., Schulte S., Hofmann K., Stoffel W. Structure, expression, and functional analysis of a Na(+)-dependent glutamate/aspartate transporter from rat brain. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10955–10959. doi: 10.1073/pnas.89.22.10955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiner R. I., Wetsel W., Goldsmith P., Martinez de la Escalera G., Windle J., Padula C., Choi A., Negro-Vilar A., Mellon P. Gonadotropin-releasing hormone neuronal cell lines. Front Neuroendocrinol. 1992 Apr;13(2):95–119. [PubMed] [Google Scholar]
- Wetsel W. C., Valença M. M., Merchenthaler I., Liposits Z., López F. J., Weiner R. I., Mellon P. L., Negro-Vilar A. Intrinsic pulsatile secretory activity of immortalized luteinizing hormone-releasing hormone-secreting neurons. Proc Natl Acad Sci U S A. 1992 May 1;89(9):4149–4153. doi: 10.1073/pnas.89.9.4149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- al-Damluji S. Adrenergic control of the secretion of anterior pituitary hormones. Baillieres Clin Endocrinol Metab. 1993 Apr;7(2):355–392. doi: 10.1016/s0950-351x(05)80180-6. [DOI] [PubMed] [Google Scholar]
- al-Damluji S., Krsmanovic L. Z., Catt K. J. High-affinity uptake of noradrenaline in postsynaptic neurones. Br J Pharmacol. 1993 Jun;109(2):299–307. doi: 10.1111/j.1476-5381.1993.tb13570.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Duve C., de Barsy T., Poole B., Trouet A., Tulkens P., Van Hoof F. Commentary. Lysosomotropic agents. Biochem Pharmacol. 1974 Sep 15;23(18):2495–2531. doi: 10.1016/0006-2952(74)90174-9. [DOI] [PubMed] [Google Scholar]
