Abstract
1. We have used the isolated buffer-perfused mesenteric arterial bed of the rat to assess the modulation of vasorelaxation to potassium channel openers (KCOs) by basal nitric oxide. 2. The dose-response curves to the KCOs, levcromakalim and pinacidil, in preconstricted preparations were significantly shifted to the left in the presence of the nitric oxide synthase inhibitor (100 microM) NG-nitro-L-arginine methyl ester (levcromakalim, ED50 = 4.47 +/- 0.70 nmol vs. 1.73 +/- 0.26 nmol, P < 0.001; pinacidil, ED50 = 16.1 +/- 4.8 nmol vs. 5.43 +/- 1.10 nmol, P < 0.001). The vasorelaxant responses to papaverine, a vasodilator which acts independently of potassium channels was unaffected by NG-nitro-L-arginine methyl ester (L-NAME). 3. Removal of the endothelium, by perfusion with the detergent CHAPS (0.3%), significantly (P < 0.001) increased the potency of levcromakalim as a vasodilator (ED50 4.47 +/- 0.70 nmol vs. 2.59 +/- 0.31 nmol). The subsequent administration of L-NAME following perfusion with CHAPS did not lead to any additional enhancement of responses to levcromakalim. 4. The presence of the non-selective adenosine antagonist, 8-phenyltheophylline (8-PT, 10 microM) significantly (P < 0.001) shifted the dose-response curve to levcromakalim to the left (ED50 4.47 +/- 0.70 nmol vs. 1.11 +/- 0.32 nmol). In the presence of both L-NAME and 8-PT, the dose-response curve to levcromakalim was also significantly (P < 0.01) shifted to the left compared with control (ED50 in the presence of both L-NAME and 8-PT was 0.42 +/- 0.08 nmol). 5. The presence of 8-bromo cyclic GMP (10 microM) reversed the increase potency of levcromakalim, observed following inhibition of nitric oxide synthase (ED50 in the presence of L-NAME was 0.59 +/- 0.01 nmol and in the presence of 8-bromo cyclic GMP plus L-NAME the ED50 was 3.17 +/- 0.80 nmol). However in the absence of L-NAME, the cell permeable analogue of cyclic GMP, 8-bromo cyclic GMP, did not affect the dose-response curve to levcromakalim compared with control (control ED50 value was 4.16 +/- 0.52 nmol vs. 3.85 +/- 1.13 nmol in the presence of 8-bromo cyclic GMP). 6. The present investigation demonstrates that both basal nitric oxide and adenosine modulate vasorelaxation to the KCOs levcromakalim and pinacidil. The modulatory effect of nitric oxide may be mediated via cyclic GMP.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akatsuka Y., Egashira K., Katsuda Y., Narishige T., Ueno H., Shimokawa H., Takeshita A. ATP sensitive potassium channels are involved in adenosine A2 receptor mediated coronary vasodilatation in the dog. Cardiovasc Res. 1994 Jun;28(6):906–911. doi: 10.1093/cvr/28.6.906. [DOI] [PubMed] [Google Scholar]
- Ashcroft S. J., Ashcroft F. M. Properties and functions of ATP-sensitive K-channels. Cell Signal. 1990;2(3):197–214. doi: 10.1016/0898-6568(90)90048-f. [DOI] [PubMed] [Google Scholar]
- Ashford M. L., Sturgess N. C., Trout N. J., Gardner N. J., Hales C. N. Adenosine-5'-triphosphate-sensitive ion channels in neonatal rat cultured central neurones. Pflugers Arch. 1988 Aug;412(3):297–304. doi: 10.1007/BF00582512. [DOI] [PubMed] [Google Scholar]
- Bolotina V. M., Najibi S., Palacino J. J., Pagano P. J., Cohen R. A. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature. 1994 Apr 28;368(6474):850–853. doi: 10.1038/368850a0. [DOI] [PubMed] [Google Scholar]
- Cook D. L., Hales C. N. Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature. 1984 Sep 20;311(5983):271–273. doi: 10.1038/311271a0. [DOI] [PubMed] [Google Scholar]
- Cook S. J., Small R. C., Berry J. L., Chiu P., Downing S. J., Foster R. W. Beta-adrenoceptor subtypes and the opening of plasmalemmal K(+)-channels in trachealis muscle: electrophysiological and mechanical studies in guinea-pig tissue. Br J Pharmacol. 1993 Aug;109(4):1140–1148. doi: 10.1111/j.1476-5381.1993.tb13741.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dart C., Standen N. B. Adenosine-activated potassium current in smooth muscle cells isolated from the pig coronary artery. J Physiol. 1993 Nov;471:767–786. doi: 10.1113/jphysiol.1993.sp019927. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edwards G., Weston A. H. Potassium channel openers and vascular smooth muscle relaxation. Pharmacol Ther. 1990;48(2):237–258. doi: 10.1016/0163-7258(90)90082-d. [DOI] [PubMed] [Google Scholar]
- Edwards G., Weston A. H. The pharmacology of ATP-sensitive potassium channels. Annu Rev Pharmacol Toxicol. 1993;33:597–637. doi: 10.1146/annurev.pa.33.040193.003121. [DOI] [PubMed] [Google Scholar]
- Fan Z., Tokuyama Y., Makielski J. C. Modulation of ATP-sensitive K+ channels by internal acidification in insulin-secreting cells. Am J Physiol. 1994 Oct;267(4 Pt 1):C1036–C1044. doi: 10.1152/ajpcell.1994.267.4.C1036. [DOI] [PubMed] [Google Scholar]
- Fosset M., Schmid-Antomarchi H., de Weille J. R., Lazdunski M. Somatostatin activates glibenclamide-sensitive and ATP-regulated K+ channels in insulinoma cells via a G-protein. FEBS Lett. 1988 Dec 19;242(1):94–96. doi: 10.1016/0014-5793(88)80992-x. [DOI] [PubMed] [Google Scholar]
- Furchgott R. F., Zawadzki J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 Nov 27;288(5789):373–376. doi: 10.1038/288373a0. [DOI] [PubMed] [Google Scholar]
- Gardiner S. M., Kemp P. A., Bennett T. Effects of NG-nitro-L-arginine methyl ester on vasodilator responses to adrenaline or BRL 38227 in conscious rats. Br J Pharmacol. 1991 Nov;104(3):731–737. doi: 10.1111/j.1476-5381.1991.tb12496.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffith T. M., Edwards D. H., Davies R. L., Harrison T. J., Evans K. T. EDRF coordinates the behaviour of vascular resistance vessels. Nature. 1987 Oct 1;329(6138):442–445. doi: 10.1038/329442a0. [DOI] [PubMed] [Google Scholar]
- Herity N. A., Allen J. D., Silke B., Adgey A. A. Assessment of ability of levcromakalim and sodium nitroprusside to reverse the cardiovascular effects of nitric oxide synthase inhibition in the anaesthetised pig. Cardiovasc Res. 1994 Jun;28(6):894–900. doi: 10.1093/cvr/28.6.894. [DOI] [PubMed] [Google Scholar]
- Janigro D., West G. A., Gordon E. L., Winn H. R. ATP-sensitive K+ channels in rat aorta and brain microvascular endothelial cells. Am J Physiol. 1993 Sep;265(3 Pt 1):C812–C821. doi: 10.1152/ajpcell.1993.265.3.C812. [DOI] [PubMed] [Google Scholar]
- Jiang H., Shabb J. B., Corbin J. D. Cross-activation: overriding cAMP/cGMP selectivities of protein kinases in tissues. Biochem Cell Biol. 1992 Dec;70(12):1283–1289. doi: 10.1139/o92-175. [DOI] [PubMed] [Google Scholar]
- Kirsch G. E., Codina J., Birnbaumer L., Brown A. M. Coupling of ATP-sensitive K+ channels to A1 receptors by G proteins in rat ventricular myocytes. Am J Physiol. 1990 Sep;259(3 Pt 2):H820–H826. doi: 10.1152/ajpheart.1990.259.3.H820. [DOI] [PubMed] [Google Scholar]
- Kostic M. M., Schrader J. Role of nitric oxide in reactive hyperemia of the guinea pig heart. Circ Res. 1992 Jan;70(1):208–212. doi: 10.1161/01.res.70.1.208. [DOI] [PubMed] [Google Scholar]
- Krippeit-Drews P., Morel N., Godfraind T. Effect of nitric oxide on membrane potential and contraction of rat aorta. J Cardiovasc Pharmacol. 1992;20 (Suppl 12):S72–S75. doi: 10.1097/00005344-199204002-00022. [DOI] [PubMed] [Google Scholar]
- Lederer W. J., Nichols C. G. Nucleotide modulation of the activity of rat heart ATP-sensitive K+ channels in isolated membrane patches. J Physiol. 1989 Dec;419:193–211. doi: 10.1113/jphysiol.1989.sp017869. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Linde C., Quast U. Potentiation of P1075-induced K+ channel opening by stimulation of adenylate cyclase in rat isolated aorta. Br J Pharmacol. 1995 Jun;115(3):515–521. doi: 10.1111/j.1476-5381.1995.tb16364.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lüscher T. F., Vanhoutte P. M. Endothelium-dependent contractions to acetylcholine in the aorta of the spontaneously hypertensive rat. Hypertension. 1986 Apr;8(4):344–348. doi: 10.1161/01.hyp.8.4.344. [DOI] [PubMed] [Google Scholar]
- Miller R. C., Mony M., Schini V., Schoeffter P., Stoclet J. C. Endothelial mediated inhibition of contraction and increase in cyclic GMP levels evoked by the alpha-adrenoceptor agonist B-HT 920 in rat isolated aorta. Br J Pharmacol. 1984 Dec;83(4):903–908. doi: 10.1111/j.1476-5381.1984.tb16530.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miyoshi H., Nakaya Y. Endotoxin-induced nonendothelial nitric oxide activates the Ca(2+)-activated K+ channel in cultured vascular smooth muscle cells. J Mol Cell Cardiol. 1994 Nov;26(11):1487–1495. doi: 10.1006/jmcc.1994.1167. [DOI] [PubMed] [Google Scholar]
- Miyoshi H., Nakaya Y., Moritoki H. Nonendothelial-derived nitric oxide activates the ATP-sensitive K+ channel of vascular smooth muscle cells. FEBS Lett. 1994 May 23;345(1):47–49. doi: 10.1016/0014-5793(94)00417-x. [DOI] [PubMed] [Google Scholar]
- Moore P. K., al-Swayeh O. A., Chong N. W., Evans R. A., Gibson A. L-NG-nitro arginine (L-NOARG), a novel, L-arginine-reversible inhibitor of endothelium-dependent vasodilatation in vitro. Br J Pharmacol. 1990 Feb;99(2):408–412. doi: 10.1111/j.1476-5381.1990.tb14717.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murphy M. E., Brayden J. E. Nitric oxide hyperpolarizes rabbit mesenteric arteries via ATP-sensitive potassium channels. J Physiol. 1995 Jul 1;486(Pt 1):47–58. doi: 10.1113/jphysiol.1995.sp020789. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nelson M. T., Huang Y., Brayden J. E., Hescheler J., Standen N. B. Arterial dilations in response to calcitonin gene-related peptide involve activation of K+ channels. Nature. 1990 Apr 19;344(6268):770–773. doi: 10.1038/344770a0. [DOI] [PubMed] [Google Scholar]
- Nichols C. G., Lederer W. J. Adenosine triphosphate-sensitive potassium channels in the cardiovascular system. Am J Physiol. 1991 Dec;261(6 Pt 2):H1675–H1686. doi: 10.1152/ajpheart.1991.261.6.H1675. [DOI] [PubMed] [Google Scholar]
- Noma A. ATP-regulated K+ channels in cardiac muscle. Nature. 1983 Sep 8;305(5930):147–148. doi: 10.1038/305147a0. [DOI] [PubMed] [Google Scholar]
- Olah M. E., Stiles G. L. Adenosine receptors. Annu Rev Physiol. 1992;54:211–225. doi: 10.1146/annurev.ph.54.030192.001235. [DOI] [PubMed] [Google Scholar]
- Pilsudski R., Rougier O., Tourneur Y. Activation of an ATP-sensitive K+ current is promoted by internal GDP in frog atrial myocytes. Pflugers Arch. 1989;414 (Suppl 1):S177–S177. doi: 10.1007/BF00582292. [DOI] [PubMed] [Google Scholar]
- Quast U., Cook N. S. Moving together: K+ channel openers and ATP-sensitive K+ channels. Trends Pharmacol Sci. 1989 Nov;10(11):431–435. doi: 10.1016/S0165-6147(89)80003-3. [DOI] [PubMed] [Google Scholar]
- Randall M. D., Griffith T. M. Modulation of vasodilatation to levcromakalim by hypoxia and EDRF in the rabbit isolated ear: a comparison with pinacidil, sodium nitroprusside and verapamil. Br J Pharmacol. 1993 Jun;109(2):386–393. doi: 10.1111/j.1476-5381.1993.tb13581.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Randall M. D., Hiley C. R. Effect of phenobarbitone pretreatment upon endothelium-dependent relaxation to acetylcholine in rat superior mesenteric arterial bed. Br J Pharmacol. 1988 Jul;94(3):977–983. doi: 10.1111/j.1476-5381.1988.tb11612.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Randall M. D., McCulloch A. I. The involvement of ATP-sensitive potassium channels in beta-adrenoceptor-mediated vasorelaxation in the rat isolated mesenteric arterial bed. Br J Pharmacol. 1995 Jun;115(4):607–612. doi: 10.1111/j.1476-5381.1995.tb14975.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Randall M. D. The involvement of ATP-sensitive potassium channels and adenosine in the regulation of coronary flow in the isolated perfused rat heart. Br J Pharmacol. 1995 Dec;116(7):3068–3074. doi: 10.1111/j.1476-5381.1995.tb15965.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Randall M. D., Ujiie H., Griffith T. M. Modulation of vasodilatation to levcromakalim by adenosine analogues in the rabbit ear: an explanation for hypoxic augmentation. Br J Pharmacol. 1994 May;112(1):49–54. doi: 10.1111/j.1476-5381.1994.tb13027.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rapoport R. M., Murad F. Agonist-induced endothelium-dependent relaxation in rat thoracic aorta may be mediated through cGMP. Circ Res. 1983 Mar;52(3):352–357. doi: 10.1161/01.res.52.3.352. [DOI] [PubMed] [Google Scholar]
- Robertson B. E., Schubert R., Hescheler J., Nelson M. T. cGMP-dependent protein kinase activates Ca-activated K channels in cerebral artery smooth muscle cells. Am J Physiol. 1993 Jul;265(1 Pt 1):C299–C303. doi: 10.1152/ajpcell.1993.265.1.C299. [DOI] [PubMed] [Google Scholar]
- Spruce A. E., Standen N. B., Stanfield P. R. Voltage-dependent ATP-sensitive potassium channels of skeletal muscle membrane. Nature. 1985 Aug 22;316(6030):736–738. doi: 10.1038/316736a0. [DOI] [PubMed] [Google Scholar]
- Standen N. B., Quayle J. M., Davies N. W., Brayden J. E., Huang Y., Nelson M. T. Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle. Science. 1989 Jul 14;245(4914):177–180. doi: 10.1126/science.2501869. [DOI] [PubMed] [Google Scholar]
- Sturgess N. C., Ashford M. L., Cook D. L., Hales C. N. The sulphonylurea receptor may be an ATP-sensitive potassium channel. Lancet. 1985 Aug 31;2(8453):474–475. doi: 10.1016/s0140-6736(85)90403-9. [DOI] [PubMed] [Google Scholar]
- Tare M., Parkington H. C., Coleman H. A., Neild T. O., Dusting G. J. Hyperpolarization and relaxation of arterial smooth muscle caused by nitric oxide derived from the endothelium. Nature. 1990 Jul 5;346(6279):69–71. doi: 10.1038/346069a0. [DOI] [PubMed] [Google Scholar]
- Verbeuren T. J., Jordaens F. H., Zonnekeyn L. L., Van Hove C. E., Coene M. C., Herman A. G. Effect of hypercholesterolemia on vascular reactivity in the rabbit. I. Endothelium-dependent and endothelium-independent contractions and relaxations in isolated arteries of control and hypercholesterolemic rabbits. Circ Res. 1986 Apr;58(4):552–564. doi: 10.1161/01.res.58.4.552. [DOI] [PubMed] [Google Scholar]
- Williams D. L., Jr, Katz G. M., Roy-Contancin L., Reuben J. P. Guanosine 5'-monophosphate modulates gating of high-conductance Ca2+-activated K+ channels in vascular smooth muscle cells. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9360–9364. doi: 10.1073/pnas.85.23.9360. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Beckerath N., Cyrys S., Dischner A., Daut J. Hypoxic vasodilatation in isolated, perfused guinea-pig heart: an analysis of the underlying mechanisms. J Physiol. 1991 Oct;442:297–319. doi: 10.1113/jphysiol.1991.sp018794. [DOI] [PMC free article] [PubMed] [Google Scholar]