Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Apr;117(7):1435–1442. doi: 10.1111/j.1476-5381.1996.tb15303.x

The lack of a role for potassium channel opening in the action of relaxin in the rat isolated uterus; a comparison with levcromakalim and salbutamol.

S J Hughes 1, M Hollingsworth 1
PMCID: PMC1909433  PMID: 8730736

Abstract

1. The effects of relaxin in vitro in the isolated uterus from the non-pregnant rat were compared with those of levcromakalim and salbutamol in tissue bath, 42K+ -efflux and electrophysiological studies, to determine whether relaxin exhibits the characteristics of an opener of KATP-channels. 2. In uterus exposed to oxytocin (0.2 nM), tetraethylammonium (TEA, 10 mM) and glibenclamide (10 microM) produced large rightward shifts of the log10 concentration-effect curve to levcromakalim (125 fold and 118 fold, respectively). TEA (10 mM) caused only small rightward shifts of the log10 concentration-effect curves to salbutamol and relaxin (5.2 fold and 7.5 fold respectively). Glibenclamide did not antagonize salbutamol or relaxin. 3. Levromakalim (0.2 and 2 microM) suppressed the spasm evoked by low ( < or = 40 mM) but not high ( > 40 mM) concentrations of KCl. Salbutamol (1.5 nM) inhibited the spasm evoked by low concentrations of KCl ( < or = 40 mM). Salbutamol (15 nM) and relaxin (3 and 30 nM) inhibited the spasm evoked by low and high concentrations of KCl (10-80 mM). 4. Relaxin (0.12 microM) did not produce an increase in 42K+-efflux from longitudinal segments of rat myometrium. Exposure of tissues to relaxin (0.12 microM), in the presence of diltiazem (1 microM) plus KCl (20 mM), resulted in a small increase in 42K+-efflux of short duration. 5. Electrophysiological recording showed that the phasic spasms of the uterus exposed to oxytocin (0.2 nM) were accompanied by bursts of spiking activity superimposed upon a plateau potential. Inhibition of the mechanical activity of the uterus by levcromakalim (2 and 10 microM), salbutamol (30 nM) or relaxin (0.18 microM) was accompanied by a reduction in the duration of the plateau potential and the number of spikes without membrane hyperpolarization. 6. Unlike levcromakalim, relaxin did not selectively inhibit the spasm evoked by low concentrations of KCl and was not markedly antagonized by TEA or glibenclamide. Under conditions where a cromakalim-induced increase of the 42K+-efflux rate has been demonstrated, relaxin had only a very small effect. In isolated uterus from the rat, in contrast to observations in vivo, relaxin did not exhibit the characteristics of an opener of KATP-channels suggesting that another mechanism accounts for its inhibitory action.

Full text

PDF
1435

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anwer K., Toro L., Oberti C., Stefani E., Sanborn B. M. Ca(2+)-activated K+ channels in pregnant rat myometrium: modulation by a beta-adrenergic agent. Am J Physiol. 1992 Nov;263(5 Pt 1):C1049–C1056. doi: 10.1152/ajpcell.1992.263.5.C1049. [DOI] [PubMed] [Google Scholar]
  2. CASTEELS R., KURIYAMA H. MEMBRANE POTENTIAL AND IONIC CONTENT IN PREGNANT AND NON-PREGNANT RAT MYOMETRIUM. J Physiol. 1965 Mar;177:263–287. doi: 10.1113/jphysiol.1965.sp007591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chamley W. A., Parkington H. C. Relaxin inhibits the plateau component of the action potential in the circular myometrium of the rat. J Physiol. 1984 Aug;353:51–65. doi: 10.1113/jphysiol.1984.sp015321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cheuk J. M., Hollingsworth M., Hughes S. J., Piper I. T., Maresh M. J. Inhibition of contractions of the isolated human myometrium by potassium channel openers. Am J Obstet Gynecol. 1993 Mar;168(3 Pt 1):953–960. doi: 10.1016/s0002-9378(12)90852-2. [DOI] [PubMed] [Google Scholar]
  5. Cook S. J., Small R. C., Berry J. L., Chiu P., Downing S. J., Foster R. W. Beta-adrenoceptor subtypes and the opening of plasmalemmal K(+)-channels in trachealis muscle: electrophysiological and mechanical studies in guinea-pig tissue. Br J Pharmacol. 1993 Aug;109(4):1140–1148. doi: 10.1111/j.1476-5381.1993.tb13741.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cox R. H. Effects of putative K+ channel activator BRL-34915 on arterial contraction and 86Rb efflux. J Pharmacol Exp Ther. 1990 Jan;252(1):51–59. [PubMed] [Google Scholar]
  7. Diamond J., Marshall J. M. Smooth muscle relaxants: dissociation between resting membrane potential and resting tension in rat myometrium. J Pharmacol Exp Ther. 1969 Jul;168(1):13–20. [PubMed] [Google Scholar]
  8. Downing S. J., Hollingsworth M. Action of relaxin on uterine contractions--a review. J Reprod Fertil. 1993 Nov;99(2):275–282. doi: 10.1530/jrf.0.0990275. [DOI] [PubMed] [Google Scholar]
  9. Downing S. J., Hollingsworth M. Antagonism of relaxin by glibenclamide in the uterus of the rat in vivo. Br J Pharmacol. 1991 Sep;104(1):71–76. doi: 10.1111/j.1476-5381.1991.tb12387.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Downing S. J., McIlwrath A., Hollingsworth M. Cyclic adenosine 3'5'-monophosphate and the relaxant action of relaxin in the rat uterus in vivo. J Reprod Fertil. 1992 Nov;96(2):857–863. doi: 10.1530/jrf.0.0960857. [DOI] [PubMed] [Google Scholar]
  11. Edwards G., Ibbotson T., Weston A. H. Levcromakalim may induce a voltage-independent K-current in rat portal veins by modifying the gating properties of the delayed rectifier. Br J Pharmacol. 1993 Nov;110(3):1037–1048. doi: 10.1111/j.1476-5381.1993.tb13918.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Granger S. E., Hollingsworth M., Weston A. H. A comparison of several calcium antagonists on uterine, vascular and cardiac muscles from the rat. Br J Pharmacol. 1985 May;85(1):255–262. doi: 10.1111/j.1476-5381.1985.tb08854.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hamilton T. C., Weir S. W., Weston A. H. Comparison of the effects of BRL 34915 and verapamil on electrical and mechanical activity in rat portal vein. Br J Pharmacol. 1986 May;88(1):103–111. doi: 10.1111/j.1476-5381.1986.tb09476.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hollingsworth M., Amédée T., Edwards D., Mironneau J., Savineau J. P., Small R. C., Weston A. H. The relaxant action of BRL 34915 in rat uterus. Br J Pharmacol. 1987 Aug;91(4):803–813. doi: 10.1111/j.1476-5381.1987.tb11279.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hughes S. J., Hollingsworth M. Cellular localization of the inhibitory action of relaxin against uterine spasm. Br J Pharmacol. 1995 Dec;116(7):3028–3034. doi: 10.1111/j.1476-5381.1995.tb15959.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Judson D. G., Pay S., Bhoola K. D. Modulation of cyclic AMP in isolated rat uterine tissue slices by porcine relaxin. J Endocrinol. 1980 Oct;87(1):153–159. doi: 10.1677/joe.0.0870153. [DOI] [PubMed] [Google Scholar]
  17. Kuriyama H., Suzuki H. Changes in electrical properties of rat myometrium during gestation and following hormonal treatments. J Physiol. 1976 Sep;260(2):315–333. doi: 10.1113/jphysiol.1976.sp011517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Marshall J. M. Modulation of smooth muscle activity by catecholamines. Fed Proc. 1977 Sep;36(10):2450–2455. [PubMed] [Google Scholar]
  19. Osa T., Inoue H., Okabe K. Effects of porcine relaxin on contraction, membrane response and cyclic AMP content in rat myometrium in comparison with the effects of isoprenaline and forskolin. Br J Pharmacol. 1991 Dec;104(4):950–960. doi: 10.1111/j.1476-5381.1991.tb12532.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Piper I. T., Hollingsworth M. Cromakalim- and RP 49356-induced 42K+ and 86Rb+ efflux in rat myometrium. Eur J Pharmacol. 1995 Sep 5;283(1-3):1–8. doi: 10.1016/0014-2999(95)00256-k. [DOI] [PubMed] [Google Scholar]
  21. Piper I., Minshall E., Downing S. J., Hollingsworth M., Sadraei H. Effects of several potassium channel openers and glibenclamide on the uterus of the rat. Br J Pharmacol. 1990 Dec;101(4):901–907. doi: 10.1111/j.1476-5381.1990.tb14178.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Quast U., Baumlin Y. Comparison of the effluxes of 42K+ and 86Rb+ elicited by cromakalim (BRL 34915) in tonic and phasic vascular tissue. Naunyn Schmiedebergs Arch Pharmacol. 1988 Sep;338(3):319–326. doi: 10.1007/BF00173407. [DOI] [PubMed] [Google Scholar]
  23. Quast U. Do the K+ channel openers relax smooth muscle by opening K+ channels? Trends Pharmacol Sci. 1993 Sep;14(9):332–337. doi: 10.1016/0165-6147(93)90006-6. [DOI] [PubMed] [Google Scholar]
  24. Sanborn B. M., Kuo H. S., Weisbrodt N. W., Sherwood O. D. The interaction of relaxin with the rat uterus. I. Effect on cyclic nucleotide levels and spontaneous contractile activity. Endocrinology. 1980 Apr;106(4):1210–1215. doi: 10.1210/endo-106-4-1210. [DOI] [PubMed] [Google Scholar]
  25. Sherwood C. D., O'Byrne E. M. Purification and characterization of porcine relaxin. Arch Biochem Biophys. 1974 Jan;160(1):185–196. doi: 10.1016/s0003-9861(74)80025-1. [DOI] [PubMed] [Google Scholar]
  26. Small R. C., Weston A. H. Simultaneous long-term recording of the mechanical and intracellular electrical activity of smooth muscles. J Pharmacol Methods. 1980 Jan;3(1):33–38. doi: 10.1016/0160-5402(80)90062-5. [DOI] [PubMed] [Google Scholar]
  27. St-Louis J. Relaxin inhibition of KCl-induced uterine contractions in vitro: an alternative bioassay. Can J Physiol Pharmacol. 1981 May;59(5):507–512. doi: 10.1139/y81-076. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES