Abstract
1. Previous studies have provided evidence that activation of beta-adrenoceptors on cholinergic nerve terminals can inhibit neurotransmission in the airways. However, in most cases, this conclusion has been based on indirect evidence obtained from mechanical experiments where changes in airways smooth muscle tone were measured. 2. We have assessed whether modulation of cholinergic neurotransmission by beta-adrenoceptor agonists is due to a pre- or post-junctional action by investigating the effect of isoprenaline on contractile responses evoked by exogenous acetylcholine (ACh) and electrical field stimulation (EFS; 4 Hz, 40 V, 0.5 ms pulse width every 15 s), and on EFS-induced ACh release from cholinergic nerves innervating guinea-pig and human trachea. Furthermore, the subtype of beta-adrenoceptor which modulates neurotransmission and the potential role of cyclic AMP in this response were evaluated. 3. In guinea-pig trachea, isoprenaline (1 nM-1 microM) inhibited the contractile response evoked by exogenous ACh (1 microM) to a similar extent to that evoked by EFS (EC50 = 19.9 and 23 nM, respectively). 4. In epithelium-denuded guinea-pig strips treated with indomethacin (10 microM), isoprenaline significantly enhanced EFS-induced ACh release from cholinergic nerve terminals (by 36% at 0.3 microM). This effect was blocked by propranolol and ICI 118, 551 (each 0.1 microM). In contrast, isoprenaline failed to affect EFS-induced ACh release from parasympathetic nerves innervating human trachea. 5. To evaluate the role of cyclic AMP in the beta-adrenoceptor-induced facilitation of cholinergic neurotransmission, the effects of various cyclic AMP elevating drugs on ACh release were studied. Forskolin (10 microM) significantly augmented (by 17%) EFS-induced ACh release, an effect which was not reproduced by 1,9-dideoxyforskolin (10 microM) which does not activate adenylyl cyclase. Similarly, the cyclic AMP analogue, 8-bromo-cyclic AMP (1 mM) and cholera toxin (1 microgram ml-1) facilitated ACh output by 22 and 47% respectively, whereas prostaglandin E2 (PGE2, 0.1 nM-1 microM) inhibited this response (by 67% at 1 microM). 6. Zardaverine (10 microM), a dual inhibitor of the phosphodiesterase (PDE)3 and PDE4 isoenzyme families, did not affect EFS-induced ACh release and failed to facilitate the actions of either isoprenaline or PGE2. Similarly, neither SK&F 94120 (10 microM) nor rolipram (10 microM), selective inhibitors of PDE3 and PDE4 respectively, significantly affected the release of ACh in response to EFS. 7. The result of this study suggests that isoprenaline facilitates cholinergic neurotransmission in guinea-pig, but not human, trachea by activation of pre-junctional beta 2-adrenoceptors, an effect that may be mediated via activation of the cyclic AMP/cyclic AMP-dependent protein kinase cascade. Furthermore, the data presented herein illustrate the need to undertake direct measurements of neurotransmitter release when examining the effect of agents purported to act pre-junctionally.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aizawa H., Inoue H., Ikeda T., Hirose T., Ito Y. Effects of procaterol, a beta-2-adrenoceptor stimulant, on neuroeffector transmission in human bronchial tissue. Respiration. 1991;58(3-4):163–166. doi: 10.1159/000195919. [DOI] [PubMed] [Google Scholar]
- Baker D. G., Don H. Catecholamines abolish vagal but not acetylcholine tone in the intact cat trachea. J Appl Physiol (1985) 1987 Dec;63(6):2490–2498. doi: 10.1152/jappl.1987.63.6.2490. [DOI] [PubMed] [Google Scholar]
- Barber R., Butcher R. W. The quantitative relationship between intracellular concentration and egress of cyclic AMP from cultured cells. Mol Pharmacol. 1981 Jan;19(1):38–43. [PubMed] [Google Scholar]
- Barnes P. J. Muscarinic receptor subtypes in airways. Life Sci. 1993;52(5-6):521–527. doi: 10.1016/0024-3205(93)90310-y. [DOI] [PubMed] [Google Scholar]
- Blackwell G. J., Flower R. J., Nijkamp F. P., Vane J. R. Phospholipase A2 activity of guinea-pig isolated perfused lungs: stimulation, and inhibition by anti-inflammatory steroids. Br J Pharmacol. 1978 Jan;62(1):79–89. doi: 10.1111/j.1476-5381.1978.tb07009.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Breckenridge B. M., Burn J. H., Matschinsky F. M. Theophylline, epinephrine, and neostigmine facilitation of neuromuscular transmission. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1893–1897. doi: 10.1073/pnas.57.6.1893. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chiou L. C., Chang C. C. A selective inhibitor of cAMP-specific phosphodiesterase, Ro 20-1724, has no effect on the quantal release of acetylcholine from the mouse phrenic nerve. J Pharm Pharmacol. 1988 Feb;40(2):148–149. doi: 10.1111/j.2042-7158.1988.tb05205.x. [DOI] [PubMed] [Google Scholar]
- D'Agostino G., Chiari M. C., Grana E., Subissi A., Kilbinger H. Muscarinic inhibition of acetylcholine release from a novel in vitro preparation of the guinea-pig trachea. Naunyn Schmiedebergs Arch Pharmacol. 1990 Aug;342(2):141–145. doi: 10.1007/BF00166956. [DOI] [PubMed] [Google Scholar]
- Danser A. H., van den Ende R., Lorenz R. R., Flavahan N. A., Vanhoutte P. M. Prejunctional beta 1-adrenoceptors inhibit cholinergic transmission in canine bronchi. J Appl Physiol (1985) 1987 Feb;62(2):785–790. doi: 10.1152/jappl.1987.62.2.785. [DOI] [PubMed] [Google Scholar]
- DeLisle S., Biggs D., Wang A., Martin J. G. Effects of prostaglandin E2 on ganglionic transmission in the guinea pig trachea. Respir Physiol. 1992 Jan;87(1):131–139. doi: 10.1016/0034-5687(92)90105-6. [DOI] [PubMed] [Google Scholar]
- Deckers I. A., Rampart M., Bult H., Herman A. G. Evidence for the involvement of prostaglandins in modulation of acetylcholine release from canine bronchial tissue. Eur J Pharmacol. 1989 Aug 29;167(3):415–418. doi: 10.1016/0014-2999(89)90451-2. [DOI] [PubMed] [Google Scholar]
- Dryden W. F., Singh Y. N., Gordon T., Lazarenko G. Pharmacological elevation of cyclic AMP and transmitter release at the mouse neuromuscular junction. Can J Physiol Pharmacol. 1988 Mar;66(3):207–212. doi: 10.1139/y88-036. [DOI] [PubMed] [Google Scholar]
- Galvan M., Schudt C. Actions of the phosphodiesterase inhibitor zardaverine on guinea-pig ventricular muscle. Naunyn Schmiedebergs Arch Pharmacol. 1990 Aug;342(2):221–227. doi: 10.1007/BF00166968. [DOI] [PubMed] [Google Scholar]
- Goldberg A. L., Singer J. J. Evidence for a role of cyclic AMP in neuromuscular transmission. Proc Natl Acad Sci U S A. 1969 Sep;64(1):134–141. doi: 10.1073/pnas.64.1.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hattori T., Maehashi H. Facilitation of frog neuromuscular transmission by sodium fluoride. Br J Pharmacol. 1987 Nov;92(3):513–519. doi: 10.1111/j.1476-5381.1987.tb11351.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inoue T., Ito Y., Takeda K. Prostaglandin-induced inhibition of acetylcholine release from neuronal elements of dog tracheal tissue. J Physiol. 1984 Apr;349:553–570. doi: 10.1113/jphysiol.1984.sp015173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ito Y. Pre- and post-junctional actions of procaterol, a beta 2-adrenoceptor stimulant, on dog tracheal tissue. Br J Pharmacol. 1988 Sep;95(1):268–274. doi: 10.1111/j.1476-5381.1988.tb16573.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ito Y., Tajima K. Dual effects of catecholamines on pre- and post-junctional membranes in the dog trachea. Br J Pharmacol. 1982 Mar;75(3):433–440. doi: 10.1111/j.1476-5381.1982.tb09158.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Janssen L. J., Daniel E. E. Characterization of the prejunctional beta adrenoceptors in canine bronchial smooth muscle. J Pharmacol Exp Ther. 1990 Aug;254(2):741–749. [PubMed] [Google Scholar]
- Jones T. R., Kannan M. S., Daniel E. E. Ultrastructural study of guinea pig tracheal smooth muscle and its innervation. Can J Physiol Pharmacol. 1980 Aug;58(8):974–983. doi: 10.1139/y80-148. [DOI] [PubMed] [Google Scholar]
- Kalix P. Prostaglandin E1 raises the cAMP content of peripheral nerve tissue. Neurosci Lett. 1979 May;12(2-3):361–364. doi: 10.1016/0304-3940(79)96090-7. [DOI] [PubMed] [Google Scholar]
- Kamikawa Y., Shimo Y. Inhibitory effects of sympathomimetic drugs on cholinergically mediated contractions of guinea-pig isolated tracheal muscle. J Pharm Pharmacol. 1986 Oct;38(10):742–747. doi: 10.1111/j.2042-7158.1986.tb04482.x. [DOI] [PubMed] [Google Scholar]
- Kilbinger H., Schneider R., Siefken H., Wolf D., D'Agostino G. Characterization of prejunctional muscarinic autoreceptors in the guinea-pig trachea. Br J Pharmacol. 1991 Jul;103(3):1757–1763. doi: 10.1111/j.1476-5381.1991.tb09859.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laurenza A., Sutkowski E. M., Seamon K. B. Forskolin: a specific stimulator of adenylyl cyclase or a diterpene with multiple sites of action? Trends Pharmacol Sci. 1989 Nov;10(11):442–447. doi: 10.1016/S0165-6147(89)80008-2. [DOI] [PubMed] [Google Scholar]
- Mann S. P. The innervation of mammalian bronchial smooth muscle: the localization of catecholamines and cholinesterases. Histochem J. 1971 Sep;3(5):319–331. doi: 10.1007/BF01005014. [DOI] [PubMed] [Google Scholar]
- Martin C. A., Naline E., Manara L., Advenier C. Effects of two beta 3-adrenoceptor agonists, SR 58611A and BRL 37344, and of salbutamol on cholinergic and NANC neural contraction in guinea-pig main bronchi in vitro. Br J Pharmacol. 1993 Dec;110(4):1311–1316. doi: 10.1111/j.1476-5381.1993.tb13961.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin J. G., Collier B. Acetylcholine release from canine isolated airway is not modulated by norepinephrine. J Appl Physiol (1985) 1986 Sep;61(3):1025–1030. doi: 10.1152/jappl.1986.61.3.1025. [DOI] [PubMed] [Google Scholar]
- Nakanishi H., Yoshida H., Nakahata N., Suzuki T. Effects of prostaglandins on excitatory transmission in isolated canine tracheal muscle. Jpn J Pharmacol. 1978 Dec;28(6):883–889. doi: 10.1254/jjp.28.883. [DOI] [PubMed] [Google Scholar]
- Patel H. J., Barnes P. J., Takahashi T., Tadjkarimi S., Yacoub M. H., Belvisi M. G. Evidence for prejunctional muscarinic autoreceptors in human and guinea pig trachea. Am J Respir Crit Care Med. 1995 Sep;152(3):872–878. doi: 10.1164/ajrccm.152.3.7663798. [DOI] [PubMed] [Google Scholar]
- Rhoden K. J., Meldrum L. A., Barnes P. J. Inhibition of cholinergic neurotransmission in human airways by beta 2-adrenoceptors. J Appl Physiol (1985) 1988 Aug;65(2):700–705. doi: 10.1152/jappl.1988.65.2.700. [DOI] [PubMed] [Google Scholar]
- Richardson J. B. Nerve supply to the lungs. Am Rev Respir Dis. 1979 May;119(5):785–802. doi: 10.1164/arrd.1979.119.5.785. [DOI] [PubMed] [Google Scholar]
- Richardson J., Béland J. Nonadrenergic inhibitory nervous system in human airways. J Appl Physiol. 1976 Nov;41(5 Pt 1):764–771. doi: 10.1152/jappl.1976.41.5.764. [DOI] [PubMed] [Google Scholar]
- Roch P., Salamin A. Effect of beta-adrenergic drugs on adenosine 3', 5'-monophosphate in rabbit vagus nerve. J Neurochem. 1977 May;28(5):947–950. doi: 10.1111/j.1471-4159.1977.tb10655.x. [DOI] [PubMed] [Google Scholar]
- Standaert F. G., Dretchen K. L. Cyclic nucleotides and neuromuscular transmission. Fed Proc. 1979 Jul;38(8):2183–2192. [PubMed] [Google Scholar]
- Suzuki K., Sugiyama S., Takagi K., Satake T., Ozawa T. The role of phospholipase in beta-agonist-induced down regulation in guinea pig lungs. Biochem Med Metab Biol. 1987 Apr;37(2):157–166. doi: 10.1016/0885-4505(87)90022-3. [DOI] [PubMed] [Google Scholar]
- Ten Berge R. E., Weening E. C., Roffel A. F., Zaagsma J. Beta 2- but not beta 3-adrenoceptors mediate prejunctional inhibition of non-adrenergic non-cholinergic contraction of guinea pig main bronchi. Eur J Pharmacol. 1995 Mar 6;275(2):199–206. doi: 10.1016/0014-2999(94)00771-x. [DOI] [PubMed] [Google Scholar]
- Tomlinson S., Mac Neil S., Brown B. L. Calcium, cyclic AMP and hormone action. Clin Endocrinol (Oxf) 1985 Nov;23(5):595–610. doi: 10.1111/j.1365-2265.1985.tb01120.x. [DOI] [PubMed] [Google Scholar]
- Vermeire P. A., Vanhoutte P. M. Inhibitory effects of catecholamine in isolated canine bronchial smooth muscle. J Appl Physiol Respir Environ Exerc Physiol. 1979 Apr;46(4):787–791. doi: 10.1152/jappl.1979.46.4.787. [DOI] [PubMed] [Google Scholar]
- Walters E. H., O'Byrne P. M., Fabbri L. M., Graf P. D., Holtzman M. J., Nadel J. A. Control of neurotransmission by prostaglandins in canine trachealis smooth muscle. J Appl Physiol Respir Environ Exerc Physiol. 1984 Jul;57(1):129–134. doi: 10.1152/jappl.1984.57.1.129. [DOI] [PubMed] [Google Scholar]
- Ward J. K., Belvisi M. G., Fox A. J., Miura M., Tadjkarimi S., Yacoub M. H., Barnes P. J. Modulation of cholinergic neural bronchoconstriction by endogenous nitric oxide and vasoactive intestinal peptide in human airways in vitro. J Clin Invest. 1993 Aug;92(2):736–742. doi: 10.1172/JCI116644. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wessler I., Anschütz S. Beta-adrenoceptor stimulation enhances transmitter output from the rat phrenic nerve. Br J Pharmacol. 1988 Jul;94(3):669–674. doi: 10.1111/j.1476-5381.1988.tb11574.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wessler I., Hellwig D., Racké K. Epithelium-derived inhibition of [3H]acetylcholine release from the isolated guinea-pig trachea. Naunyn Schmiedebergs Arch Pharmacol. 1990 Oct;342(4):387–393. doi: 10.1007/BF00169454. [DOI] [PubMed] [Google Scholar]
- Wessler I., Holzer G., Künster A. Stimulation of beta 1-adrenoceptors enhances electrically evoked [3H]-acetylcholine release from rat phrenic nerve. Clin Exp Pharmacol Physiol. 1990 Jan;17(1):23–32. doi: 10.1111/j.1440-1681.1990.tb01261.x. [DOI] [PubMed] [Google Scholar]
- Wessler I., Reinheimer T., Brunn G., Anderson G. P., Maclagan J., Racké K. Beta-adrenoceptors mediate inhibition of [3H]-acetylcholine release from the isolated rat and guinea-pig trachea: role of the airway mucosa and prostaglandins. Br J Pharmacol. 1994 Dec;113(4):1221–1230. doi: 10.1111/j.1476-5381.1994.tb17128.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson D. F. The effects of dibutyryl cyclic adenosine 3',5'-monophosphate, theophylline and aminophylline on neuromuscular transmission in the rat. J Pharmacol Exp Ther. 1974 Feb;188(2):447–452. [PubMed] [Google Scholar]
