Abstract
1. The effects of lifarizine (RS-87476) on intracellular Ca2+ rises and the release of glutamate from rat cerebrocortical synaptosomes depolarized with 30 mM KCl were investigated by use of entrapped fura 2 and exogenous glutamate dehydrogenase. 2. Prior (1 min) addition of lifarizine decreased 30 mM KCl-induced total glutamate release, with 3 microM and 10 microM causing 39% and 72% averaged decreases from controls. The calcium-dependent component of glutamate release (approx. 40% of total) was similarly decreased by 47% and 74%, whereas the calcium-independent component was decreased by only 32% and 43% respectively. 3. In parallel experiments with fura-2-loaded synaptosomes, lifarizine reduced the depolarization-induced increases in intracellular [Ca2+], suggesting that this is the means by which the decreases in glutamate release are brought about. Lifarizine inhibited both the plateau and the spike phases of the Ca2+ increases suggesting that, in addition to its known sodium channel blocking properties, it may also inhibit more than one class of calcium channel in the synaptosomes. 4. Lifarizine at 1 microM and 3 microM also inhibited the rises in intracellular [Ca2+] in rat cultured cortical neurons depolarized with 60 mM KCl. 5. These effects of lifarizine on intracellular Ca2+ and glutamate exocytosis may contribute to its neuroprotective action.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alps B. J., Calder C., Hass W. K., Wilson A. D. Comparative protective effects of nicardipine, flunarizine, lidoflazine and nimodipine against ischaemic injury in the hippocampus of the Mongolian gerbil. Br J Pharmacol. 1988 Apr;93(4):877–883. doi: 10.1111/j.1476-5381.1988.tb11475.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alps B. J. Drugs acting on calcium channels: potential treatment for ischaemic stroke. Br J Clin Pharmacol. 1992 Sep;34(3):199–206. doi: 10.1111/j.1365-2125.1992.tb04125.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Brown C. M., Calder C., Alps B. J., Spedding M. The effect of lifarizine (RS-87476), a novel sodium and calcium channel modulator, on ischaemic dopamine depletion in the corpus striatum of the gerbil. Br J Pharmacol. 1993 May;109(1):175–177. doi: 10.1111/j.1476-5381.1993.tb13549.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown C. M., Calder C., Linton C., Small C., Kenny B. A., Spedding M., Patmore L. Neuroprotective properties of lifarizine compared with those of other agents in a mouse model of focal cerebral ischaemia. Br J Pharmacol. 1995 Aug;115(8):1425–1432. doi: 10.1111/j.1476-5381.1995.tb16633.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Budd D. C., Nicholls D. G. Protein kinase C-mediated suppression of the presynaptic adenosine A1 receptor by a facilitatory metabotropic glutamate receptor. J Neurochem. 1995 Aug;65(2):615–621. doi: 10.1046/j.1471-4159.1995.65020615.x. [DOI] [PubMed] [Google Scholar]
- Choi D. W. Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci. 1988 Oct;11(10):465–469. doi: 10.1016/0166-2236(88)90200-7. [DOI] [PubMed] [Google Scholar]
- Choi D. W. Ionic dependence of glutamate neurotoxicity. J Neurosci. 1987 Feb;7(2):369–379. doi: 10.1523/JNEUROSCI.07-02-00369.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cousin M. A., Nicholls D. G., Pocock J. M. Flunarizine inhibits both calcium-dependent and -independent release of glutamate from synaptosomes and cultured neurones. Brain Res. 1993 Mar 26;606(2):227–236. doi: 10.1016/0006-8993(93)90989-z. [DOI] [PubMed] [Google Scholar]
- Dunkley P. R., Heath J. W., Harrison S. M., Jarvie P. E., Glenfield P. J., Rostas J. A. A rapid Percoll gradient procedure for isolation of synaptosomes directly from an S1 fraction: homogeneity and morphology of subcellular fractions. Brain Res. 1988 Feb 16;441(1-2):59–71. doi: 10.1016/0006-8993(88)91383-2. [DOI] [PubMed] [Google Scholar]
- Gill R., Brazell C., Woodruff G. N., Kemp J. A. The neuroprotective action of dizocilpine (MK-801) in the rat middle cerebral artery occlusion model of focal ischaemia. Br J Pharmacol. 1991 Aug;103(4):2030–2036. doi: 10.1111/j.1476-5381.1991.tb12371.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Graham D., Darles G., Langer S. Z. The neuroprotective properties of ifenprodil, a novel NMDA receptor antagonist, in neuronal cell culture toxicity studies. Eur J Pharmacol. 1992 Aug 3;226(4):373–376. doi: 10.1016/0922-4106(92)90056-2. [DOI] [PubMed] [Google Scholar]
- Graham S. H., Chen J., Lan J., Leach M. J., Simon R. P. Neuroprotective effects of a use-dependent blocker of voltage-dependent sodium channels, BW619C89, in rat middle cerebral artery occlusion. J Pharmacol Exp Ther. 1994 May;269(2):854–859. [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Kauppinen R. A., McMahon H. T., Nicholls D. G. Ca2+-dependent and Ca2+-independent glutamate release, energy status and cytosolic free Ca2+ concentration in isolated nerve terminals following metabolic inhibition: possible relevance to hypoglycaemia and anoxia. Neuroscience. 1988 Oct;27(1):175–182. doi: 10.1016/0306-4522(88)90228-x. [DOI] [PubMed] [Google Scholar]
- Kucharczyk J., Mintorovitch J., Moseley M. E., Asgari H. S., Sevick R. J., Derugin N., Norman D. Ischemic brain damage: reduction by sodium-calcium ion channel modulator RS-87476. Radiology. 1991 Apr;179(1):221–227. doi: 10.1148/radiology.179.1.2006281. [DOI] [PubMed] [Google Scholar]
- Leach M. J., Swan J. H., Eisenthal D., Dopson M., Nobbs M. BW619C89, a glutamate release inhibitor, protects against focal cerebral ischemic damage. Stroke. 1993 Jul;24(7):1063–1067. doi: 10.1161/01.str.24.7.1063. [DOI] [PubMed] [Google Scholar]
- MacKinnon A. C., Wyatt K. M., McGivern J. G., Sheridan R. D., Brown C. M. [3H]-lifarizine, a high affinity probe for inactivated sodium channels. Br J Pharmacol. 1995 Jul;115(6):1103–1109. doi: 10.1111/j.1476-5381.1995.tb15924.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- May G. R., Rowand W. S., McCormack J. G., Sheridan R. D. Neuroprotective profile of lifarizine (RS-87476) in rat cerebrocortical neurones in culture. Br J Pharmacol. 1995 Apr;114(7):1365–1370. doi: 10.1111/j.1476-5381.1995.tb13357.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McGivern J. G., Patmore L., Sheridan R. D. Actions of the novel neuroprotective agent, lifarizine (RS-87476), on voltage-dependent sodium currents in the neuroblastoma cell line, N1E-115. Br J Pharmacol. 1995 Apr;114(8):1738–1744. doi: 10.1111/j.1476-5381.1995.tb14965.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miyamoto J., Hisatome I., Matsuoka S., Kosaka H., Kurata Y., Tanaka Y., Nawada T., Kotake H., Mashiba H., Sato R. The effect of TYB-3823, a new antiarrhythmic drug, on sodium current in isolated cardiac cells. Br J Pharmacol. 1991 Sep;104(1):25–30. doi: 10.1111/j.1476-5381.1991.tb12379.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicholls D. G. Calcium transport and porton electrochemical potential gradient in mitochondria from guinea-pig cerebral cortex and rat heart. Biochem J. 1978 Mar 15;170(3):511–522. doi: 10.1042/bj1700511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicholls D. G., Sihra T. S., Sanchez-Prieto J. Calcium-dependent and -independent release of glutamate from synaptosomes monitored by continuous fluorometry. J Neurochem. 1987 Jul;49(1):50–57. doi: 10.1111/j.1471-4159.1987.tb03393.x. [DOI] [PubMed] [Google Scholar]
- Park C. K., Nehls D. G., Graham D. I., Teasdale G. M., McCulloch J. The glutamate antagonist MK-801 reduces focal ischemic brain damage in the rat. Ann Neurol. 1988 Oct;24(4):543–551. doi: 10.1002/ana.410240411. [DOI] [PubMed] [Google Scholar]
- Pauwels P. J., Van Assouw H. P., Leysen J. E., Janssen P. A. Ca2+-mediated neuronal death in rat brain neuronal cultures by veratridine: protection by flunarizine. Mol Pharmacol. 1989 Oct;36(4):525–531. [PubMed] [Google Scholar]
- Pocock J. M., Cousin M. A., Nicholls D. G. The calcium channel coupled to the exocytosis of L-glutamate from cerebellar granule cells is inhibited by the spider toxin, Aga-GI. Neuropharmacology. 1993 Nov;32(11):1185–1194. doi: 10.1016/0028-3908(93)90012-r. [DOI] [PubMed] [Google Scholar]
- Prenen G. H., Go K. G., Postema F., Zuiderveen F., Korf J. Cerebral cation shifts in hypoxic-ischemic brain damage are prevented by the sodium channel blocker tetrodotoxin. Exp Neurol. 1988 Jan;99(1):118–132. doi: 10.1016/0014-4886(88)90132-x. [DOI] [PubMed] [Google Scholar]
- Romano-Silva M. A., Gomez M. V., Brammer M. J. Modulation of Ca(2+)-stimulated glutamate release from synaptosomes by Na+ entry through tetrodotoxin-sensitive channels. Biochem J. 1994 Dec 1;304(Pt 2):353–357. doi: 10.1042/bj3040353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Szatkowski M., Attwell D. Triggering and execution of neuronal death in brain ischaemia: two phases of glutamate release by different mechanisms. Trends Neurosci. 1994 Sep;17(9):359–365. doi: 10.1016/0166-2236(94)90040-x. [DOI] [PubMed] [Google Scholar]
- Weiss J. H., Hartley D. M., Koh J., Choi D. W. The calcium channel blocker nifedipine attenuates slow excitatory amino acid neurotoxicity. Science. 1990 Mar 23;247(4949 Pt 1):1474–1477. doi: 10.1126/science.247.4949.1474. [DOI] [PubMed] [Google Scholar]
- Yamasaki Y., Kogure K., Hara H., Ban H., Akaike N. The possible involvement of tetrodotoxin-sensitive ion channels in ischemic neuronal damage in the rat hippocampus. Neurosci Lett. 1991 Jan 2;121(1-2):251–254. doi: 10.1016/0304-3940(91)90697-r. [DOI] [PubMed] [Google Scholar]
