Abstract
1. The relation between changes in the cerebral cortical concentration of allopregnanolone and gamma-aminobutyric acid (GABA) type A receptor function after intracerebroventricular injection of this neurosteroid was investigated in male rats. 2. Intracerebroventricular administration of allopregnanolone (1.25 to 15 micrograms) produced a maximal increase (100 fold at the highest dose) in cortical allopregnanolone concentration within 5 min; the concentration remained significantly increased at 15 and 30 min, before returning to control values by 60 min. 3. The same treatment induced a rapid and dose-dependent decrease in the binding of t-[35S]-butylbicyclophosphorothionate ([35S]-TBPS) to cerebral cortical membranes measured ex vivo, an effect mimicked by the benzodiazepine midazolam but not by the 3 beta-hydroxyepimer of allopregnanolone. The time course of changes in [35S]-TBPS binding paralleled that of brain allopregnanolone concentration. 4. In a dose-dependent manner, allopregnanolone both delayed the onset of convulsions and inhibited the increase in [35S]-TBPS binding to cortical membranes induced by isoniazid. The potency of allopregnanolone in inhibiting [35S]-TBPS binding in isoniazid-treated rats was approximately four times that in control animals. 5. The ability of allopregnanolone to decrease [35S]-TBPS binding in isoniazid-treated rats also correlated with its anticonvulsant activity against pentylenetetrazol-induced seizures as well as its inhibitory effect on the increase in [35S]-TBPS binding induced by foot shock. 6. The results indicate that the in vivo administration of allopregnanolone enhances the function of GABAA receptors in rat cerebral cortex and antagonizes the inhibitory action of stress and drugs that reduce GABAergic transmission.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barbaccia M. L., Roscetti G., Trabucchi M., Cuccheddu T., Concas A., Biggio G. Neurosteroids in the brain of handling-habituated and naive rats: effect of CO2 inhalation. Eur J Pharmacol. 1994 Aug 22;261(3):317–320. doi: 10.1016/0014-2999(94)90123-6. [DOI] [PubMed] [Google Scholar]
- Barbaccia M. L., Roscetti G., Trabucchi M., Mostallino M. C., Concas A., Purdy R. H., Biggio G. Time-dependent changes in rat brain neuroactive steroid concentrations and GABAA receptor function after acute stress. Neuroendocrinology. 1996 Feb;63(2):166–172. doi: 10.1159/000126953. [DOI] [PubMed] [Google Scholar]
- Baulieu E. E., Robel P. Neurosteroids: a new brain function? J Steroid Biochem Mol Biol. 1990 Nov 20;37(3):395–403. doi: 10.1016/0960-0760(90)90490-c. [DOI] [PubMed] [Google Scholar]
- Belelli D., Lan N. C., Gee K. W. Anticonvulsant steroids and the GABA/benzodiazepine receptor-chloride ionophore complex. Neurosci Biobehav Rev. 1990 Fall;14(3):315–322. doi: 10.1016/s0149-7634(05)80041-7. [DOI] [PubMed] [Google Scholar]
- Biggio G., Concas A., Corda M. G., Giorgi O., Sanna E., Serra M. GABAergic and dopaminergic transmission in the rat cerebral cortex: effect of stress, anxiolytic and anxiogenic drugs. Pharmacol Ther. 1990;48(2):121–142. doi: 10.1016/0163-7258(90)90077-f. [DOI] [PubMed] [Google Scholar]
- Bitran D., Hilvers R. J., Kellogg C. K. Anxiolytic effects of 3 alpha-hydroxy-5 alpha[beta]-pregnan-20-one: endogenous metabolites of progesterone that are active at the GABAA receptor. Brain Res. 1991 Oct 4;561(1):157–161. doi: 10.1016/0006-8993(91)90761-j. [DOI] [PubMed] [Google Scholar]
- Bitran D., Purdy R. H., Kellogg C. K. Anxiolytic effect of progesterone is associated with increases in cortical allopregnanolone and GABAA receptor function. Pharmacol Biochem Behav. 1993 Jun;45(2):423–428. doi: 10.1016/0091-3057(93)90260-z. [DOI] [PubMed] [Google Scholar]
- Chen J. S., Lee K. T., Ker C. G., Sheen P. C. Hepato-biliary disease in the elderly. Gaoxiong Yi Xue Ke Xue Za Zhi. 1987 May;3(5):346–353. [PubMed] [Google Scholar]
- Concas A., Sanna E., Cuccheddu T., Mascia M. P., Santoro G., Maciocco E., Biggio G. Carbon dioxide inhalation, stress and anxiogenic drugs reduce the function of GABAA receptor complex in the rat brain. Prog Neuropsychopharmacol Biol Psychiatry. 1993 Jul;17(4):651–661. doi: 10.1016/0278-5846(93)90012-h. [DOI] [PubMed] [Google Scholar]
- Concas A., Sanna E., Serra M., Mascia M. P., Santoro V., Biggio G. "Ex vivo" binding of 35S-TBPS as a tool to study the pharmacology of GABAA receptors. Adv Biochem Psychopharmacol. 1990;46:89–108. [PubMed] [Google Scholar]
- Concas A., Serra M., Atsoggiu T., Biggio G. Foot-shock stress and anxiogenic beta-carbolines increase t-[35S]butylbicyclophosphorothionate binding in the rat cerebral cortex, an effect opposite to anxiolytics and gamma-aminobutyric acid mimetics. J Neurochem. 1988 Dec;51(6):1868–1876. doi: 10.1111/j.1471-4159.1988.tb01170.x. [DOI] [PubMed] [Google Scholar]
- Corda M. G., Biggio G. Stress and GABAergic transmission: biochemical and behavioural studies. Adv Biochem Psychopharmacol. 1986;41:121–136. [PubMed] [Google Scholar]
- Corpéchot C., Young J., Calvel M., Wehrey C., Veltz J. N., Touyer G., Mouren M., Prasad V. V., Banner C., Sjövall J. Neurosteroids: 3 alpha-hydroxy-5 alpha-pregnan-20-one and its precursors in the brain, plasma, and steroidogenic glands of male and female rats. Endocrinology. 1993 Sep;133(3):1003–1009. doi: 10.1210/endo.133.3.8365352. [DOI] [PubMed] [Google Scholar]
- Crawley J. N., Glowa J. R., Majewska M. D., Paul S. M. Anxiolytic activity of an endogenous adrenal steroid. Brain Res. 1986 Nov 29;398(2):382–385. doi: 10.1016/0006-8993(86)91500-3. [DOI] [PubMed] [Google Scholar]
- Drugan R. C., Morrow A. L., Weizman R., Weizman A., Deutsch S. I., Crawley J. N., Paul S. M. Stress-induced behavioral depression in the rat is associated with a decrease in GABA receptor-mediated chloride ion flux and brain benzodiazepine receptor occupancy. Brain Res. 1989 May 15;487(1):45–51. doi: 10.1016/0006-8993(89)90938-4. [DOI] [PubMed] [Google Scholar]
- Finn D. A., Gee K. W. The influence of estrus cycle on neurosteroid potency at the gamma-aminobutyric acidA receptor complex. J Pharmacol Exp Ther. 1993 Jun;265(3):1374–1379. [PubMed] [Google Scholar]
- Gee K. W., Bolger M. B., Brinton R. E., Coirini H., McEwen B. S. Steroid modulation of the chloride ionophore in rat brain: structure-activity requirements, regional dependence and mechanism of action. J Pharmacol Exp Ther. 1988 Aug;246(2):803–812. [PubMed] [Google Scholar]
- Gee K. W., Lawrence L. J., Yamamura H. I. Modulation of the chloride ionophore by benzodiazepine receptor ligands: influence of gamma-aminobutyric acid and ligand efficacy. Mol Pharmacol. 1986 Sep;30(3):218–225. [PubMed] [Google Scholar]
- Holzbauer M., Birmingham M. K., De Nicola A. F., Oliver J. T. In vivo secretion of 3 alpha-hydroxy-5 alpha-pregnan-20-one, a potent anaesthetic steroid, by the adrenal gland of the rat. J Steroid Biochem. 1985 Jan;22(1):97–102. doi: 10.1016/0022-4731(85)90147-5. [DOI] [PubMed] [Google Scholar]
- Horton R. W., Chapman A. G., Meldrum B. S. The convulsant action of hydrazides and regional changes in cerebral gamma-aminobutyric acid and pyridoxal phosphate concentrations. J Neurochem. 1979 Sep;33(3):745–749. doi: 10.1111/j.1471-4159.1979.tb05220.x. [DOI] [PubMed] [Google Scholar]
- Im W. B., Blakeman D. P., Davis J. P., Ayer D. E. Studies on the mechanism of interactions between anesthetic steroids and gamma-aminobutyric acidA receptors. Mol Pharmacol. 1990 Mar;37(3):429–434. [PubMed] [Google Scholar]
- Kokate T. G., Svensson B. E., Rogawski M. A. Anticonvulsant activity of neurosteroids: correlation with gamma-aminobutyric acid-evoked chloride current potentiation. J Pharmacol Exp Ther. 1994 Sep;270(3):1223–1229. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lambert J. J., Belelli D., Hill-Venning C., Peters J. A. Neurosteroids and GABAA receptor function. Trends Pharmacol Sci. 1995 Sep;16(9):295–303. doi: 10.1016/s0165-6147(00)89058-6. [DOI] [PubMed] [Google Scholar]
- Lambert J. J., Peters J. A., Sturgess N. C., Hales T. G. Steroid modulation of the GABAA receptor complex: electrophysiological studies. Ciba Found Symp. 1990;153:56–82. doi: 10.1002/9780470513989.ch4. [DOI] [PubMed] [Google Scholar]
- Majewska M. D., Ford-Rice F., Falkay G. Pregnancy-induced alterations of GABAA receptor sensitivity in maternal brain: an antecedent of post-partum 'blues'? Brain Res. 1989 Mar 20;482(2):397–401. doi: 10.1016/0006-8993(89)91208-0. [DOI] [PubMed] [Google Scholar]
- Majewska M. D., Harrison N. L., Schwartz R. D., Barker J. L., Paul S. M. Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science. 1986 May 23;232(4753):1004–1007. doi: 10.1126/science.2422758. [DOI] [PubMed] [Google Scholar]
- Majewska M. D. Neurosteroids: endogenous bimodal modulators of the GABAA receptor. Mechanism of action and physiological significance. Prog Neurobiol. 1992;38(4):379–395. doi: 10.1016/0301-0082(92)90025-a. [DOI] [PubMed] [Google Scholar]
- Obata T., Yamamura H. I. The effect of benzodiazepines and beta-carbolines on GABA-stimulated chloride influx by membrane vesicles from the rat cerebral cortex. Biochem Biophys Res Commun. 1986 Nov 26;141(1):1–6. doi: 10.1016/s0006-291x(86)80325-4. [DOI] [PubMed] [Google Scholar]
- Paul S. M., Purdy R. H. Neuroactive steroids. FASEB J. 1992 Mar;6(6):2311–2322. [PubMed] [Google Scholar]
- Puia G., Santi M. R., Vicini S., Pritchett D. B., Purdy R. H., Paul S. M., Seeburg P. H., Costa E. Neurosteroids act on recombinant human GABAA receptors. Neuron. 1990 May;4(5):759–765. doi: 10.1016/0896-6273(90)90202-q. [DOI] [PubMed] [Google Scholar]
- Purdy R. H., Morrow A. L., Moore P. H., Jr, Paul S. M. Stress-induced elevations of gamma-aminobutyric acid type A receptor-active steroids in the rat brain. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4553–4557. doi: 10.1073/pnas.88.10.4553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanna E., Cuccheddu T., Serra M., Concas A., Biggio G. Carbon dioxide inhalation reduces the function of GABAA receptors in the rat brain. Eur J Pharmacol. 1992 Jun 17;216(3):457–458. doi: 10.1016/0014-2999(92)90447-c. [DOI] [PubMed] [Google Scholar]
- Serra M., Foddi M. C., Ghiani C. A., Melis M. A., Motzo C., Concas A., Sanna E., Biggio G. Pharmacology of gamma-aminobutyric acidA receptor complex after the in vivo administration of the anxioselective and anticonvulsant beta-carboline derivative abecarnil. J Pharmacol Exp Ther. 1992 Dec;263(3):1360–1368. [PubMed] [Google Scholar]
- Serra M., Ghiani C. A., Motzo C., Cuccheddu T., Floris S., Giusti P., Biggio G. Imidazenil, a new partial agonist of benzodiazepine receptors, reverses the inhibitory action of isoniazid and stress on gamma-aminobutyric acidA receptor function. J Pharmacol Exp Ther. 1994 Apr;269(1):32–38. [PubMed] [Google Scholar]
- Turner D. M., Ransom R. W., Yang J. S., Olsen R. W. Steroid anesthetics and naturally occurring analogs modulate the gamma-aminobutyric acid receptor complex at a site distinct from barbiturates. J Pharmacol Exp Ther. 1989 Mar;248(3):960–966. [PubMed] [Google Scholar]
- Wieland S., Lan N. C., Mirasedeghi S., Gee K. W. Anxiolytic activity of the progesterone metabolite 5 alpha-pregnan-3 alpha-o1-20-one. Brain Res. 1991 Nov 29;565(2):263–268. doi: 10.1016/0006-8993(91)91658-n. [DOI] [PubMed] [Google Scholar]