Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Jun;118(4):847–856. doi: 10.1111/j.1476-5381.1996.tb15477.x

Dual regulation of cerebrovascular tone by UTP: P2U receptor-mediated contraction and endothelium-dependent relaxation.

Y Miyagi 1, S Kobayashi 1, J Nishimura 1, M Fukui 1, H Kanaide 1
PMCID: PMC1909534  PMID: 8799553

Abstract

1. The mechanisms of vascular tone regulation by extracellular uridine 5'-triphosphate (UTP) were investigated in bovine middle cerebral arterial strips. Changes in cytosolic Ca2+ concentration ([Ca2+]i) and force were simultaneously monitored by use of front-surface fluorometry of fura-2. 2. In the arterial strips without endothelium, UTP (0.1 microM-1 mM) induced contraction in a concentration-dependent manner. However, when the endothelium was kept intact, cumulative application of UTP (0.1-100 microM) (and only at 1 mM) induced a modest phasic contraction in arterial strips. This endothelium-dependent reduction of the UTP-induced contraction was abolished by 100 microM N omega-nitro-L-arginine (L-NOARG) but not by 10 microM indomethacin. In the presence of intact endothelium, UTP (30 microM) induced a transient relaxation of the strips precontracted with 30 nM U-46619 (a stable analogue of thromboxane A2), which was completely inhibited by pretreatment with L-NOARG but not with indomethacin. 3. In the endothelium-denuded strips, the contractile response to UTP was abolished by desensitization to either ATP gamma S or ATP (P2U receptor agonists), but not by desensitization to alpha, beta-methylene-ATP (P2x receptor agonist) or to 2-methylthio-ATP (P2Y receptor agonist). Desensitization to UTP abolished the contractile response to ATP. 4. In the endothelium-denuded artery, a single dose application of UTP induced an initial transient, and subsequently lower but sustained increase in [Ca2+]i and force. In the absence of extracellular Ca2+, UTP induced only the initial transient increases in [Ca2+]i and force, while the sustained increases in [Ca2+]i and force were abolished. UTP (1 mM) had no effect on the basic [Ca2+]i-force relationship obtained on cumulative application of extracellular Ca2+ at steady state of 118 mM K(+)-depolarization-induced contraction. 5. We conclude that in the presence of an intact endothelium, UTP-induced relaxation of preconstricted middle cerebral artery is mainly mediated indirectly, by the production of an endothelium-derived relaxing factor, but at high doses of UTP, vascular smooth muscle contraction is mediated directly via activation of P2U purinoceptor and [Ca2+]i elevation without Ca(2+)-sensitization of the contractile apparatus. UTP may thus exert a dual regulatory effect upon cerebrovascular tone, but in cases where the endothelium is impaired, it may also act as a significant vasoconstrictor.

Full text

PDF
847

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe S., Kanaide H., Nakamura M. Front-surface fluorometry with fura-2 and effects of nitroglycerin on cytosolic calcium concentrations and on tension in the coronary artery of the pig. Br J Pharmacol. 1990 Nov;101(3):545–552. doi: 10.1111/j.1476-5381.1990.tb14118.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Angus J. A., Broughton A., Mulvany M. J. Role of alpha-adrenoceptors in constrictor responses of rat, guinea-pig and rabbit small arteries to neural activation. J Physiol. 1988 Sep;403:495–510. doi: 10.1113/jphysiol.1988.sp017260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aprigliano O., Hermsmeyer K. In vitro denervation of the portal vein and caudal artery of the rat. J Pharmacol Exp Ther. 1976 Sep;198(3):568–577. [PubMed] [Google Scholar]
  4. Benham C. D. ATP-activated channels gate calcium entry in single smooth muscle cells dissociated from rabbit ear artery. J Physiol. 1989 Dec;419:689–701. doi: 10.1113/jphysiol.1989.sp017893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burnstock G., Kennedy C. Is there a basis for distinguishing two types of P2-purinoceptor? Gen Pharmacol. 1985;16(5):433–440. doi: 10.1016/0306-3623(85)90001-1. [DOI] [PubMed] [Google Scholar]
  6. Demolle D., Lagneau C., Boeynaems J. M. Stimulation of prostacyclin release from aortic smooth muscle cells by purine and pyrimidine nucleotides. Eur J Pharmacol. 1988 Oct 18;155(3):339–343. doi: 10.1016/0014-2999(88)90526-2. [DOI] [PubMed] [Google Scholar]
  7. Erlinge D., Yoo H., Edvinsson L., Reis D. J., Wahlestedt C. Mitogenic effects of ATP on vascular smooth muscle cells vs. other growth factors and sympathetic cotransmitters. Am J Physiol. 1993 Oct;265(4 Pt 2):H1089–H1097. doi: 10.1152/ajpheart.1993.265.4.H1089. [DOI] [PubMed] [Google Scholar]
  8. Fujiwara S., Kassell N. F., Sasaki T., Nakagomi T., Lehman R. M. Selective hemoglobin inhibition of endothelium-dependent vasodilation of rabbit basilar artery. J Neurosurg. 1986 Mar;64(3):445–452. doi: 10.3171/jns.1986.64.3.0445. [DOI] [PubMed] [Google Scholar]
  9. Hardebo J. E., Kåhrström J., Owman C., Salford L. G. Endothelium-dependent relaxation by uridine tri- and diphosphate in isolated human pial vessels. Blood Vessels. 1987;24(3):150–155. doi: 10.1159/000158690. [DOI] [PubMed] [Google Scholar]
  10. Ignarro L. J., Kadowitz P. J. The pharmacological and physiological role of cyclic GMP in vascular smooth muscle relaxation. Annu Rev Pharmacol Toxicol. 1985;25:171–191. doi: 10.1146/annurev.pa.25.040185.001131. [DOI] [PubMed] [Google Scholar]
  11. Juul B., Plesner L., Aalkjaer C. Effects of ATP and UTP on [Ca2+]i, membrane potential and force in isolated rat small arteries. J Vasc Res. 1992 Sep-Oct;29(5):385–395. doi: 10.1159/000158955. [DOI] [PubMed] [Google Scholar]
  12. Keppler D., Rudigier J., Decker K. Enzymic determination of uracil nucleotides in tissues. Anal Biochem. 1970 Nov;38(1):105–114. doi: 10.1016/0003-2697(70)90160-0. [DOI] [PubMed] [Google Scholar]
  13. Kitazawa T., Somlyo A. P. Modulation of Ca2+ sensitivity by agonists in smooth muscle. Adv Exp Med Biol. 1991;304:97–109. doi: 10.1007/978-1-4684-6003-2_10. [DOI] [PubMed] [Google Scholar]
  14. Kobayashi S., Gong M. C., Somlyo A. V., Somlyo A. P. Ca2+ channel blockers distinguish between G protein-coupled pharmacomechanical Ca2+ release and Ca2+ sensitization. Am J Physiol. 1991 Feb;260(2 Pt 1):C364–C370. doi: 10.1152/ajpcell.1991.260.2.C364. [DOI] [PubMed] [Google Scholar]
  15. Kovách A. G., Szabó C., Benyó Z., Csáki C., Greenberg J. H., Reivich M. Effects of NG-nitro-L-arginine and L-arginine on regional cerebral blood flow in the cat. J Physiol. 1992 Apr;449:183–196. doi: 10.1113/jphysiol.1992.sp019081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Martin W., Villani G. M., Jothianandan D., Furchgott R. F. Selective blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation by hemoglobin and by methylene blue in the rabbit aorta. J Pharmacol Exp Ther. 1985 Mar;232(3):708–716. [PubMed] [Google Scholar]
  17. Miyagi Y., Kobayashi S., Nishimura J., Fukui M., Kanaide H. Resting load regulates cytosolic calcium-force relationship of the contraction of bovine cerebrovascular smooth muscle. J Physiol. 1995 Apr 1;484(Pt 1):123–137. doi: 10.1113/jphysiol.1995.sp020652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Miyagi Y., Kobayashi S., Nishimura J., Fukui M., Kanaide H. Resting load regulates vascular sensitivity by a cytosolic Ca(2+)-insensitive mechanism. Am J Physiol. 1995 Jun;268(6 Pt 1):C1332–C1341. doi: 10.1152/ajpcell.1995.268.6.C1332. [DOI] [PubMed] [Google Scholar]
  19. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  20. Moncada S. Prostacyclin and arterial wall biology. Arteriosclerosis. 1982 May-Jun;2(3):193–207. doi: 10.1161/01.atv.2.3.193. [DOI] [PubMed] [Google Scholar]
  21. Motte S., Pirotton S., Boeynaems J. M. Heterogeneity of ATP receptors in aortic endothelial cells. Involvement of P2y and P2u receptors in inositol phosphate response. Circ Res. 1993 Mar;72(3):504–510. doi: 10.1161/01.res.72.3.504. [DOI] [PubMed] [Google Scholar]
  22. Needham L., Cusack N. J., Pearson J. D., Gordon J. L. Characteristics of the P2 purinoceptor that mediates prostacyclin production by pig aortic endothelial cells. Eur J Pharmacol. 1987 Feb 10;134(2):199–209. doi: 10.1016/0014-2999(87)90166-x. [DOI] [PubMed] [Google Scholar]
  23. Nishimura J., Kolber M., van Breemen C. Norepinephrine and GTP-gamma-S increase myofilament Ca2+ sensitivity in alpha-toxin permeabilized arterial smooth muscle. Biochem Biophys Res Commun. 1988 Dec 15;157(2):677–683. doi: 10.1016/s0006-291x(88)80303-6. [DOI] [PubMed] [Google Scholar]
  24. O'Connor S. E., Dainty I. A., Leff P. Further subclassification of ATP receptors based on agonist studies. Trends Pharmacol Sci. 1991 Apr;12(4):137–141. doi: 10.1016/0165-6147(91)90530-6. [DOI] [PubMed] [Google Scholar]
  25. O'Connor S. E., Wood B. E., Leff P. Characterization of P2x-receptors in rabbit isolated ear artery. Br J Pharmacol. 1990 Nov;101(3):640–644. doi: 10.1111/j.1476-5381.1990.tb14133.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ralevic V., Burnstock G. Effects of purines and pyrimidines on the rat mesenteric arterial bed. Circ Res. 1991 Dec;69(6):1583–1590. doi: 10.1161/01.res.69.6.1583. [DOI] [PubMed] [Google Scholar]
  27. Rapoport R. M., Murad F. Agonist-induced endothelium-dependent relaxation in rat thoracic aorta may be mediated through cGMP. Circ Res. 1983 Mar;52(3):352–357. doi: 10.1161/01.res.52.3.352. [DOI] [PubMed] [Google Scholar]
  28. Richards S. M., Dora K. A., Rattigan S., Colquhoun E. Q., Clark M. G. Role of extracellular UTP in the release of uracil from vasoconstricted hindlimb. Am J Physiol. 1993 Jan;264(1 Pt 2):H233–H237. doi: 10.1152/ajpheart.1993.264.1.H233. [DOI] [PubMed] [Google Scholar]
  29. Saiag B., Milon D., Shacoori V., Allain H., Rault B., Van Den Driessche J. Newly evidenced pyrimidinoceptors and the P2x purinoceptors are present on the vascular smooth muscle and respectively mediate the UTP- and ATP-induced contractions of the dog maxillary internal vein. Res Commun Chem Pathol Pharmacol. 1992 Apr;76(1):89–94. [PubMed] [Google Scholar]
  30. Shirasawa Y., White R. P., Robertson J. T. Mechanisms of the contractile effect induced by uridine 5-triphosphate in canine cerebral arteries. Stroke. 1983 May-Jun;14(3):347–355. doi: 10.1161/01.str.14.3.347. [DOI] [PubMed] [Google Scholar]
  31. Somlyo A. P., Somlyo A. V. Signal transduction and regulation in smooth muscle. Nature. 1994 Nov 17;372(6503):231–236. doi: 10.1038/372231a0. [DOI] [PubMed] [Google Scholar]
  32. Tawada Y., Furukawa K., Shigekawa M. ATP-induced calcium transient in cultured rat aortic smooth muscle cells. J Biochem. 1987 Dec;102(6):1499–1509. doi: 10.1093/oxfordjournals.jbchem.a122197. [DOI] [PubMed] [Google Scholar]
  33. Urquilla P. R. Prolonged contraction of isolated human and canine cerebral arteries induced by uridine 5'-triphosphate. Stroke. 1978 Mar-Apr;9(2):133–136. doi: 10.1161/01.str.9.2.133. [DOI] [PubMed] [Google Scholar]
  34. Ushio-Fukai M., Abe S., Kobayashi S., Nishimura J., Kanaide H. Effects of isoprenaline on cytosolic calcium concentrations and on tension in the porcine coronary artery. J Physiol. 1993 Mar;462:679–696. doi: 10.1113/jphysiol.1993.sp019576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. White R. P., Robertson J. T. Pharmacodynamic evaluation of human cerebral arteries in the genesis of vasospasm. Neurosurgery. 1987 Oct;21(4):523–531. doi: 10.1227/00006123-198710000-00014. [DOI] [PubMed] [Google Scholar]
  36. Williams M., Braunwalder A. Effects of purine nucleotides on the binding of [3H]cyclopentyladenosine to adenosine A-1 receptors in rat brain membranes. J Neurochem. 1986 Jul;47(1):88–97. doi: 10.1111/j.1471-4159.1986.tb02835.x. [DOI] [PubMed] [Google Scholar]
  37. von Kügelgen I., Häussinger D., Starke K. Evidence for a vasoconstriction-mediating receptor for UTP, distinct from the P2 purinoceptor, in rabbit ear artery. Naunyn Schmiedebergs Arch Pharmacol. 1987 Nov;336(5):556–560. doi: 10.1007/BF00169313. [DOI] [PubMed] [Google Scholar]
  38. von Kügelgen I., Starke K. Evidence for two separate vasoconstriction-mediating nucleotide receptors, both distinct from the P2x-receptor, in rabbit basilar artery: a receptor for pyrimidine nucleotides and a receptor for purine nucleotides. Naunyn Schmiedebergs Arch Pharmacol. 1990 Jun;341(6):538–546. doi: 10.1007/BF00171734. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES