Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Apr;117(8):1639–1644. doi: 10.1111/j.1476-5381.1996.tb15334.x

Adenosine A2 receptor-induced inhibition of leukotriene B4 synthesis in whole blood ex vivo.

E Krump 1, G Lemay 1, P Borgeat 1
PMCID: PMC1909565  PMID: 8732271

Abstract

1. Engagement of adenosine A2 receptors suppresses several leukocyte functions. In the present study, we examined the effect of adenosine on the inhibition of leukotriene B4 (LTB4) synthesis in heparinized human whole blood, pretreated with lipopolysaccharide (LPS) and tumour necrosis factor alpha (TNF-alpha) and stimulated with the chemotactic peptide, N-formyl-Met-Leu-Phe (FMLP). 2. The FMLP-induced synthesis of LTB4 in whole blood pretreated with LPS and TNF-alpha was dose-dependently inhibited by adenosine analogues in the following order of potency; 5'(N-ethyl)carboxamidoadenosine (NECA) approximately equal to CGS 21680 > 2-Cl-adenosine > N6-cyclopentyladenosine (CPA), indicating the involvement of the adenosine A2 receptor subtype. The IC50 values for NECA, CGS 21680, 2-Cl-adenosine, and CPA were 6 nM, 9 nM, 180 nM, and 990 nM, respectively. 3. Dipyridamole, an agent that blocks the cellular uptake of adenosine by red cells and causes its accumulation in plasma, also inhibited the synthesis of LTB4 in LPS and TNF-alpha-treated whole blood stimulated by FMLP; moreover, this inhibition was reversed upon addition of adenosine deaminase. 4. A highly selective antagonist of the adenosine A2 receptor, 8-(3-chlorostyryl)caffeine (CSC), reversed the inhibition of LTB4 synthesis by 2-Cl-adenosine and dipyridamole in LPS and TNF-alpha-treated whole blood, stimulated by FMLP. 5. LTB4 synthesis in whole blood originates predominantly from neutrophils and to a lesser extent from monocytes. 2-Cl-adenosine also inhibited the synthesis of LTB4 induced by FMLP in these isolated LPS and TNF-alpha-treated cells; however, 2-Cl-adenosine was a more potent inhibitor of LTB4 synthesis in neutrophils than monocytes. 6. The present data demonstrate that adenosine, acting through A2 receptors, exerts a potent inhibitory effect on the synthesis of LTB4 and thus contribute to the understanding of its anti-inflammatory properties.

Full text

PDF
1639

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atluru D., Goodwin J. S. Leukotriene B4 causes proliferation of interleukin 2-dependent T cells in the presence of suboptimal levels of interleukin 2. Cell Immunol. 1986 May;99(2):444–452. doi: 10.1016/0008-8749(86)90252-2. [DOI] [PubMed] [Google Scholar]
  2. Beutler B., Milsark I. W., Cerami A. C. Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science. 1985 Aug 30;229(4716):869–871. doi: 10.1126/science.3895437. [DOI] [PubMed] [Google Scholar]
  3. Borgeat P., Naccache P. H. Biosynthesis and biological activity of leukotriene B4. Clin Biochem. 1990 Oct;23(5):459–468. doi: 10.1016/0009-9120(90)90272-v. [DOI] [PubMed] [Google Scholar]
  4. Borgeat P., Picard S., Vallerand P., Bourgoin S., Odeimat A., Sirois P., Poubelle P. E. Automated on-line extraction and profiling of lipoxygenase products of arachidonic acid by high-performance liquid chromatography. Methods Enzymol. 1990;187:98–116. doi: 10.1016/0076-6879(90)87014-t. [DOI] [PubMed] [Google Scholar]
  5. Bouma M. G., Stad R. K., van den Wildenberg F. A., Buurman W. A. Differential regulatory effects of adenosine on cytokine release by activated human monocytes. J Immunol. 1994 Nov 1;153(9):4159–4168. [PubMed] [Google Scholar]
  6. Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
  7. Chen X. S., Sheller J. R., Johnson E. N., Funk C. D. Role of leukotrienes revealed by targeted disruption of the 5-lipoxygenase gene. Nature. 1994 Nov 10;372(6502):179–182. doi: 10.1038/372179a0. [DOI] [PubMed] [Google Scholar]
  8. Claesson H. E., Odlander B., Jakobsson P. J. Leukotriene B4 in the immune system. Int J Immunopharmacol. 1992 Apr;14(3):441–449. doi: 10.1016/0192-0561(92)90174-j. [DOI] [PubMed] [Google Scholar]
  9. Coggeshall J. W., Christman B. W., Lefferts P. L., Serafin W. E., Blair I. A., Butterfield M. J., Snapper J. R. Effect of inhibition of 5-lipoxygenase metabolism of arachidonic acid on response to endotoxemia in sheep. J Appl Physiol (1985) 1988 Sep;65(3):1351–1359. doi: 10.1152/jappl.1988.65.3.1351. [DOI] [PubMed] [Google Scholar]
  10. Collis M. G., Hourani S. M. Adenosine receptor subtypes. Trends Pharmacol Sci. 1993 Oct;14(10):360–366. doi: 10.1016/0165-6147(93)90094-z. [DOI] [PubMed] [Google Scholar]
  11. Cronstein B. N. Adenosine, an endogenous anti-inflammatory agent. J Appl Physiol (1985) 1994 Jan;76(1):5–13. doi: 10.1152/jappl.1994.76.1.5. [DOI] [PubMed] [Google Scholar]
  12. Cronstein B. N., Daguma L., Nichols D., Hutchison A. J., Williams M. The adenosine/neutrophil paradox resolved: human neutrophils possess both A1 and A2 receptors that promote chemotaxis and inhibit O2 generation, respectively. J Clin Invest. 1990 Apr;85(4):1150–1157. doi: 10.1172/JCI114547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cronstein B. N., Haines K. A., Kolasinski S., Reibman J. Occupancy of G alpha s-linked receptors uncouples chemoattractant receptors from their stimulus-transduction mechanisms in the neutrophil. Blood. 1992 Aug 15;80(4):1052–1057. [PubMed] [Google Scholar]
  14. Cronstein B. N., Levin R. I., Belanoff J., Weissmann G., Hirschhorn R. Adenosine: an endogenous inhibitor of neutrophil-mediated injury to endothelial cells. J Clin Invest. 1986 Sep;78(3):760–770. doi: 10.1172/JCI112638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Cronstein B. N., Naime D., Ostad E. The antiinflammatory mechanism of methotrexate. Increased adenosine release at inflamed sites diminishes leukocyte accumulation in an in vivo model of inflammation. J Clin Invest. 1993 Dec;92(6):2675–2682. doi: 10.1172/JCI116884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Eppell B. A., Newell A. M., Brown E. J. Adenosine receptors are expressed during differentiation of monocytes to macrophages in vitro. Implications for regulation of phagocytosis. J Immunol. 1989 Dec 15;143(12):4141–4145. [PubMed] [Google Scholar]
  17. Fonteh A. N., Winkler J. D., Torphy T. J., Heravi J., Undem B. J., Chilton F. H. Influence of isoproterenol and phosphodiesterase inhibitors on platelet-activating factor biosynthesis in the human neutrophil. J Immunol. 1993 Jul 1;151(1):339–350. [PubMed] [Google Scholar]
  18. Ford-Hutchinson A. W. Leukotriene B4 in inflammation. Crit Rev Immunol. 1990;10(1):1–12. [PubMed] [Google Scholar]
  19. Forman M. B., Velasco C. E., Jackson E. K. Adenosine attenuates reperfusion injury following regional myocardial ischaemia. Cardiovasc Res. 1993 Jan;27(1):9–17. doi: 10.1093/cvr/27.1.9. [DOI] [PubMed] [Google Scholar]
  20. Fujimoto K., Kobayashi T. The role of leukotriene B4 in endotoxin-induced lung injury in unanesthetized sheep. Respir Physiol. 1988 Mar;71(3):259–268. doi: 10.1016/0034-5687(88)90020-5. [DOI] [PubMed] [Google Scholar]
  21. Green P. G., Basbaum A. I., Helms C., Levine J. D. Purinergic regulation of bradykinin-induced plasma extravasation and adjuvant-induced arthritis in the rat. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4162–4165. doi: 10.1073/pnas.88.10.4162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Grisham M. B., Hernandez L. A., Granger D. N. Adenosine inhibits ischemia-reperfusion-induced leukocyte adherence and extravasation. Am J Physiol. 1989 Nov;257(5 Pt 2):H1334–H1339. doi: 10.1152/ajpheart.1989.257.5.H1334. [DOI] [PubMed] [Google Scholar]
  23. Gualde N., Atluru D., Goodwin J. S. Effect of lipoxygenase metabolites of arachidonic acid on proliferation of human T cells and T cell subsets. J Immunol. 1985 Feb;134(2):1125–1129. [PubMed] [Google Scholar]
  24. Hawkes J. S., Cleland L. G., Proudman S. M., James M. J. The effect of methotrexate on ex vivo lipoxygenase metabolism in neutrophils from patients with rheumatoid arthritis. J Rheumatol. 1994 Jan;21(1):55–58. [PubMed] [Google Scholar]
  25. Iannone M. A., Wolberg G., Zimmerman T. P. Chemotactic peptide induces cAMP elevation in human neutrophils by amplification of the adenylate cyclase response to endogenously produced adenosine. J Biol Chem. 1989 Dec 5;264(34):20177–20180. [PubMed] [Google Scholar]
  26. Jacobson K. A., Nikodijević O., Padgett W. L., Gallo-Rodriguez C., Maillard M., Daly J. W. 8-(3-Chlorostyryl)caffeine (CSC) is a selective A2-adenosine antagonist in vitro and in vivo. FEBS Lett. 1993 May 24;323(1-2):141–144. doi: 10.1016/0014-5793(93)81466-d. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kaminski P. M., Proctor K. G. Attenuation of no-reflow phenomenon, neutrophil activation, and reperfusion injury in intestinal microcirculation by topical adenosine. Circ Res. 1989 Aug;65(2):426–435. doi: 10.1161/01.res.65.2.426. [DOI] [PubMed] [Google Scholar]
  28. Le Vraux V., Chen Y. L., Masson I., De Sousa M., Giroud J. P., Florentin I., Chauvelot-Moachon L. Inhibition of human monocyte TNF production by adenosine receptor agonists. Life Sci. 1993;52(24):1917–1924. doi: 10.1016/0024-3205(93)90632-d. [DOI] [PubMed] [Google Scholar]
  29. Leroux J. L., Damon M., Chavis C., Crastes de Paulet A., Blotman F. Effects of a single dose of methotrexate on 5- and 12-lipoxygenase products in patients with rheumatoid arthritis. J Rheumatol. 1992 Jun;19(6):863–866. [PubMed] [Google Scholar]
  30. Martich G. D., Danner R. L., Ceska M., Suffredini A. F. Detection of interleukin 8 and tumor necrosis factor in normal humans after intravenous endotoxin: the effect of antiinflammatory agents. J Exp Med. 1991 Apr 1;173(4):1021–1024. doi: 10.1084/jem.173.4.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Marts B. C., Baudendistel L. J., Naunheim K. S., Dahms T. E. Protective effect of 2-chloroadenosine on lung ischemia reperfusion injury. J Surg Res. 1993 Jun;54(6):523–529. doi: 10.1006/jsre.1993.1081. [DOI] [PubMed] [Google Scholar]
  32. Matera G., Cook J. A., Hennigar R. A., Tempel G. E., Wise W. C., Oglesby T. D., Halushka P. V. Beneficial effects of a 5-lipoxygenase inhibitor in endotoxic shock in the rat. J Pharmacol Exp Ther. 1988 Oct;247(1):363–371. [PubMed] [Google Scholar]
  33. Moroz C., Stevens R. H. Suppression of immunoglobulin production in normal human B lymphocytes by two T-cell subsets distinguished following in vitro treatment with adenosine. Clin Immunol Immunopathol. 1980 Jan;15(1):44–51. doi: 10.1016/0090-1229(80)90019-7. [DOI] [PubMed] [Google Scholar]
  34. Möser G. H., Schrader J., Deussen A. Turnover of adenosine in plasma of human and dog blood. Am J Physiol. 1989 Apr;256(4 Pt 1):C799–C806. doi: 10.1152/ajpcell.1989.256.4.C799. [DOI] [PubMed] [Google Scholar]
  35. Palmantier R., Surette M. E., Sanchez A., Braquet P., Borgeat P. Priming for the synthesis of 5-lipoxygenase products in human blood ex vivo by human granulocyte-macrophage colony-stimulating factor and tumor necrosis factor-alpha. Lab Invest. 1994 May;70(5):696–704. [PubMed] [Google Scholar]
  36. Parmely M. J., Zhou W. W., Edwards C. K., 3rd, Borcherding D. R., Silverstein R., Morrison D. C. Adenosine and a related carbocyclic nucleoside analogue selectively inhibit tumor necrosis factor-alpha production and protect mice against endotoxin challenge. J Immunol. 1993 Jul 1;151(1):389–396. [PubMed] [Google Scholar]
  37. Payan D. G., Missirian-Bastian A., Goetzl E. J. Human T-lymphocyte subset specificity of the regulatory effects of leukotriene B4. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3501–3505. doi: 10.1073/pnas.81.11.3501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Peachell P. T., Lichtenstein L. M., Schleimer R. P. Differential regulation of human basophil and lung mast cell function by adenosine. J Pharmacol Exp Ther. 1991 Feb;256(2):717–726. [PubMed] [Google Scholar]
  39. Ramkumar V., Stiles G. L., Beaven M. A., Ali H. The A3 adenosine receptor is the unique adenosine receptor which facilitates release of allergic mediators in mast cells. J Biol Chem. 1993 Aug 15;268(23):16887–16890. [PubMed] [Google Scholar]
  40. Rola-Pleszczynski M., Lemaire I. Leukotrienes augment interleukin 1 production by human monocytes. J Immunol. 1985 Dec;135(6):3958–3961. [PubMed] [Google Scholar]
  41. Rola-Pleszczynski M., Stanková J. Leukotriene B4 enhances interleukin-6 (IL-6) production and IL-6 messenger RNA accumulation in human monocytes in vitro: transcriptional and posttranscriptional mechanisms. Blood. 1992 Aug 15;80(4):1004–1011. [PubMed] [Google Scholar]
  42. Samuelsson B., Dahlén S. E., Lindgren J. A., Rouzer C. A., Serhan C. N. Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science. 1987 Sep 4;237(4819):1171–1176. doi: 10.1126/science.2820055. [DOI] [PubMed] [Google Scholar]
  43. Schrier D. J., Lesch M. E., Wright C. D., Gilbertsen R. B. The antiinflammatory effects of adenosine receptor agonists on the carrageenan-induced pleural inflammatory response in rats. J Immunol. 1990 Sep 15;145(6):1874–1879. [PubMed] [Google Scholar]
  44. Sperling R. I., Benincaso A. I., Anderson R. J., Coblyn J. S., Austen K. F., Weinblatt M. E. Acute and chronic suppression of leukotriene B4 synthesis ex vivo in neutrophils from patients with rheumatoid arthritis beginning treatment with methotrexate. Arthritis Rheum. 1992 Apr;35(4):376–384. doi: 10.1002/art.1780350403. [DOI] [PubMed] [Google Scholar]
  45. Surette M. E., Odeimat A., Palmantier R., Marleau S., Poubelle P. E., Borgeat P. Reverse-phase high-performance liquid chromatography analysis of arachidonic acid metabolites in plasma after stimulation of whole blood ex vivo. Anal Biochem. 1994 Feb 1;216(2):392–400. doi: 10.1006/abio.1994.1057. [DOI] [PubMed] [Google Scholar]
  46. Surette M. E., Palmantier R., Gosselin J., Borgeat P. Lipopolysaccharides prime whole human blood and isolated neutrophils for the increased synthesis of 5-lipoxygenase products by enhancing arachidonic acid availability: involvement of the CD14 antigen. J Exp Med. 1993 Oct 1;178(4):1347–1355. doi: 10.1084/jem.178.4.1347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Tsuruta S., Ito S., Mikawa H. Adenosine inhibits divalent cation influx across human neutrophil plasma membrane via surface adenosine A2 receptors. Cell Signal. 1992 Sep;4(5):543–551. doi: 10.1016/0898-6568(92)90023-2. [DOI] [PubMed] [Google Scholar]
  48. Wolberg G., Zimmerman T. P., Hiemstra K., Winston M., Chu L. C. Adenosine inhibition of lymphocyte-mediated cytolysis: possible role of cyclic adenosine monophosphate. Science. 1975 Mar 14;187(4180):957–959. doi: 10.1126/science.167434. [DOI] [PubMed] [Google Scholar]
  49. Yamaoka K. A., Claésson H. E., Rosén A. Leukotriene B4 enhances activation, proliferation, and differentiation of human B lymphocytes. J Immunol. 1989 Sep 15;143(6):1996–2000. [PubMed] [Google Scholar]
  50. Yoshikawa D., Goto F. Effect of platelet-activating factor antagonist and leukotriene antagonist on endotoxin shock in the rat: role of the leukocyte. Circ Shock. 1992 Sep;38(1):29–33. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES