Abstract
1. We demonstrate that 8-(noradamantan-3-yl)-1,3-dipropylxanthine (KW-3902) is a very potent and selective adenosine A1 receptor antagonist, assessed by radioligand binding and cyclic AMP response in cells. 2. In rat forebrain adenosine A1 receptors labelled with [3H]-cyclohexyladenosine (CHA), KW-3902 had a Ki value of 0.19 nM, whereas it showed a Ki value of 170 nM in rat striatal A2A receptors labelled with [3H]-2-[p-(2-carboxyethyl)-phenethylamino]-5'-N-ethylcarboxamidoad enosine (CGS21680), indicating 890 fold A1 receptor selectivity versus the A2A receptor. KW-3902 at 10 microM showed no effect on recombinant rat A3 receptors expressed on CHO cells. 3. Saturation studies with [3H]-KW-3902 revealed that it bound with high affinity (Kd = 77 pM) and limited capacity (Bmax = 470 fmol mg-1 of protein) to a single class of recognition sites. A high positive correlation was observed between the pharmacological profile of adenosine ligands inhibiting the binding of [3H]-KW-3902 and that of [3H]-CHA. 4. KW-3902 showed potent A1 antagonism against the inhibition of forskolin-induced cyclic AMP accumulation in DDT1 MF-2 cells by the A1-selective agonist, cyclopentyladenosine with a dissociation constant (KB value) of 0.34 nM. KW-3902 antagonized 5'-N-ethylcarboxamidoadenosine-elicited cyclic AMP accumulation via A2B receptors with a KB value of 52 nM. 5. KW-3902 exhibited marked species-dependent differences in the binding affinities. The highest affinity was for the rat A1 receptor (ki = 0.19 nM) and these values for guinea-pig and dog A1 receptors were 1.3 and 10 nM, respectively.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Billard W., Ruperto V., Crosby G., Iorio L. C., Barnett A. Characterization of the binding of 3H-SCH 23390, a selective D-1 receptor antagonist ligand, in rat striatum. Life Sci. 1984 Oct 29;35(18):1885–1893. doi: 10.1016/0024-3205(84)90540-x. [DOI] [PubMed] [Google Scholar]
- Bloom J. W., Halonen M., Seaver N. A., Yamamura H. I. Heterogeneity of the M1 muscarinic receptor subtype between peripheral lung and cerebral cortex demonstrated by the selective antagonist AF-DX 116. Life Sci. 1987 Jul 27;41(4):491–496. doi: 10.1016/0024-3205(87)90226-8. [DOI] [PubMed] [Google Scholar]
- Brackett L. E., Daly J. W. Functional characterization of the A2b adenosine receptor in NIH 3T3 fibroblasts. Biochem Pharmacol. 1994 Mar 2;47(5):801–814. doi: 10.1016/0006-2952(94)90480-4. [DOI] [PubMed] [Google Scholar]
- Braestrup C., Squires R. F. Specific benzodiazepine receptors in rat brain characterized by high-affinity (3H)diazepam binding. Proc Natl Acad Sci U S A. 1977 Sep;74(9):3805–3809. doi: 10.1073/pnas.74.9.3805. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bruns R. F., Daly J. W., Snyder S. H. Adenosine receptors in brain membranes: binding of N6-cyclohexyl[3H]adenosine and 1,3-diethyl-8-[3H]phenylxanthine. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5547–5551. doi: 10.1073/pnas.77.9.5547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bruns R. F., Fergus J. H., Badger E. W., Bristol J. A., Santay L. A., Hartman J. D., Hays S. J., Huang C. C. Binding of the A1-selective adenosine antagonist 8-cyclopentyl-1,3-dipropylxanthine to rat brain membranes. Naunyn Schmiedebergs Arch Pharmacol. 1987 Jan;335(1):59–63. doi: 10.1007/BF00165037. [DOI] [PubMed] [Google Scholar]
- Burnstock G., Hoyle C. H. PACPX--a substituted xanthine--antagonizes both the A1 and A2 subclasses of the P1-purinoceptor: antagonism of the A2 subclass is competitive but antagonism of the A1 subclass is not. Br J Pharmacol. 1985 May;85(1):291–296. doi: 10.1111/j.1476-5381.1985.tb08859.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chang R. S., Tran V. T., Snyder S. H. Heterogeneity of histamine H1-receptors: species variations in [3H]mepyramine binding of brain membranes. J Neurochem. 1979 Jun;32(6):1653–1663. doi: 10.1111/j.1471-4159.1979.tb02276.x. [DOI] [PubMed] [Google Scholar]
- Cheng Y., Prusoff W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973 Dec 1;22(23):3099–3108. doi: 10.1016/0006-2952(73)90196-2. [DOI] [PubMed] [Google Scholar]
- Collis M. G., Hourani S. M. Adenosine receptor subtypes. Trends Pharmacol Sci. 1993 Oct;14(10):360–366. doi: 10.1016/0165-6147(93)90094-z. [DOI] [PubMed] [Google Scholar]
- Gajtkowski G. A., Norris D. B., Rising T. J., Wood T. P. Specific binding of 3H-tiotidine to histamine H2 receptors in guinea pig cerebral cortex. Nature. 1983 Jul 7;304(5921):65–67. doi: 10.1038/304065a0. [DOI] [PubMed] [Google Scholar]
- Gerwins P., Fredholm B. B. Glucocorticoid receptor activation leads to up-regulation of adenosine A1 receptors and down-regulation of adenosine A2 responses in DDT1 MF-2 smooth muscle cells. Mol Pharmacol. 1991 Aug;40(2):149–155. [PubMed] [Google Scholar]
- Gerwins P., Nordstedt C., Fredholm B. B. Characterization of adenosine A1 receptors in intact DDT1 MF-2 smooth muscle cells. Mol Pharmacol. 1990 Nov;38(5):660–666. [PubMed] [Google Scholar]
- Gozlan H., El Mestikawy S., Pichat L., Glowinski J., Hamon M. Identification of presynaptic serotonin autoreceptors using a new ligand: 3H-PAT. Nature. 1983 Sep 8;305(5930):140–142. doi: 10.1038/305140a0. [DOI] [PubMed] [Google Scholar]
- Greenberg D. A., Prichard D. C., Snyder S. H. Alpha-noradrenergic receptor binding in mammalian brain: differential labeling of agonist and antagonist states. Life Sci. 1976 Jul 1;19(1):69–76. doi: 10.1016/0024-3205(76)90375-1. [DOI] [PubMed] [Google Scholar]
- Jacobson K. A., Ukena D., Kirk K. L., Daly J. W. [3H]xanthine amine congener of 1,3-dipropyl-8-phenylxanthine: an antagonist radioligand for adenosine receptors. Proc Natl Acad Sci U S A. 1986 Jun;83(11):4089–4093. doi: 10.1073/pnas.83.11.4089. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jarvis M. F., Schulz R., Hutchison A. J., Do U. H., Sills M. A., Williams M. [3H]CGS 21680, a selective A2 adenosine receptor agonist directly labels A2 receptors in rat brain. J Pharmacol Exp Ther. 1989 Dec;251(3):888–893. [PubMed] [Google Scholar]
- Kincaid R. L., Manganiello V. C. Assay of cyclic nucleotide phosphodiesterase using radiolabeled and fluorescent substrates. Methods Enzymol. 1988;159:457–470. doi: 10.1016/0076-6879(88)59045-6. [DOI] [PubMed] [Google Scholar]
- Kobayashi T., Mizumoto H., Karasawa A. Diuretic effects of KW-3902 (8-(noradamantan-3-yl)-1,3-dipropylxanthine), a novel adenosine A1 receptor antagonist, in conscious dogs. Biol Pharm Bull. 1993 Dec;16(12):1231–1235. doi: 10.1248/bpb.16.1231. [DOI] [PubMed] [Google Scholar]
- Kvanta A., Jondal M., Fredholm B. B. CD3-dependent increase in cyclic AMP in human T-cells following stimulation of the CD2 receptor. Biochim Biophys Acta. 1991 Jul 10;1093(2-3):178–183. doi: 10.1016/0167-4889(91)90120-m. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Leysen J. E., Gommeren W. Optimal conditions for [3H]apomorphine binding and anomalous equilibrium binding of [3H]apomorphine and [3H]spiperone to rat striatal membranes: involvement of surface phenomena versus multiple binding sites. J Neurochem. 1981 Jan;36(1):201–219. doi: 10.1111/j.1471-4159.1981.tb02396.x. [DOI] [PubMed] [Google Scholar]
- Leysen J. E., Niemegeers C. J., Van Nueten J. M., Laduron P. M. [3H]Ketanserin (R 41 468), a selective 3H-ligand for serotonin2 receptor binding sites. Binding properties, brain distribution, and functional role. Mol Pharmacol. 1982 Mar;21(2):301–314. [PubMed] [Google Scholar]
- Linden J., Tucker A. L., Lynch K. R. Molecular cloning of adenosine A1 and A2 receptors. Trends Pharmacol Sci. 1991 Sep;12(9):326–328. doi: 10.1016/0165-6147(91)90589-k. [DOI] [PubMed] [Google Scholar]
- Lippiello P. M., Fernandes K. G. Identification of putative high affinity nicotinic receptors on cultured cortical neurons. J Pharmacol Exp Ther. 1988 Jul;246(1):409–416. [PubMed] [Google Scholar]
- Lohse M. J., Klotz K. N., Lindenborn-Fotinos J., Reddington M., Schwabe U., Olsson R. A. 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX)--a selective high affinity antagonist radioligand for A1 adenosine receptors. Naunyn Schmiedebergs Arch Pharmacol. 1987 Aug;336(2):204–210. doi: 10.1007/BF00165806. [DOI] [PubMed] [Google Scholar]
- McCoy D. E., Bhattacharya S., Olson B. A., Levier D. G., Arend L. J., Spielman W. S. The renal adenosine system: structure, function, and regulation. Semin Nephrol. 1993 Jan;13(1):31–40. [PubMed] [Google Scholar]
- McPherson G. A. Analysis of radioligand binding experiments. A collection of computer programs for the IBM PC. J Pharmacol Methods. 1985 Nov;14(3):213–228. doi: 10.1016/0160-5402(85)90034-8. [DOI] [PubMed] [Google Scholar]
- Miyaji H., Mizukami T., Hosoi S., Sato S., Fujiyoshi N., Itoh S. Expression of human beta-interferon in Namalwa KJM-1 which was adapted to serum-free medium. Cytotechnology. 1990 Mar;3(2):133–140. doi: 10.1007/BF00143675. [DOI] [PubMed] [Google Scholar]
- Mizumoto H., Karasawa A., Kubo K. Diuretic and renal protective effects of 8-(noradamantan-3-yl)-1,3-dipropylxanthine (KW-3902), a novel adenosine A1-receptor antagonist, via pertussis toxin insensitive mechanism. J Pharmacol Exp Ther. 1993 Jul;266(1):200–206. [PubMed] [Google Scholar]
- Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
- Olah M. E., Gallo-Rodriguez C., Jacobson K. A., Stiles G. L. 125I-4-aminobenzyl-5'-N-methylcarboxamidoadenosine, a high affinity radioligand for the rat A3 adenosine receptor. Mol Pharmacol. 1994 May;45(5):978–982. [PMC free article] [PubMed] [Google Scholar]
- Ramkumar V., Barrington W. W., Jacobson K. A., Stiles G. L. Demonstration of both A1 and A2 adenosine receptors in DDT1 MF-2 smooth muscle cells. Mol Pharmacol. 1990 Feb;37(2):149–156. [PMC free article] [PubMed] [Google Scholar]
- Schachter J. B., Wolfe B. B. Cyclic AMP differentiates two separate but interacting pathways of phosphoinositide hydrolysis in the DDT1-MF2 smooth muscle cell line. Mol Pharmacol. 1992 Mar;41(3):587–597. [PubMed] [Google Scholar]
- Shimada J., Suzuki F., Nonaka H., Ishii A. 8-Polycycloalkyl-1,3-dipropylxanthines as potent and selective antagonists for A1-adenosine receptors. J Med Chem. 1992 Mar 6;35(5):924–930. doi: 10.1021/jm00083a018. [DOI] [PubMed] [Google Scholar]
- Spielman W. S., Arend L. J. Adenosine receptors and signaling in the kidney. Hypertension. 1991 Feb;17(2):117–130. doi: 10.1161/01.hyp.17.2.117. [DOI] [PubMed] [Google Scholar]
- Spielman W. S., Thompson C. I. A proposed role for adenosine in the regulation of renal hemodynamics and renin release. Am J Physiol. 1982 May;242(5):F423–F435. doi: 10.1152/ajprenal.1982.242.5.F423. [DOI] [PubMed] [Google Scholar]
- Torphy T. J., Cieslinski L. B. Characterization and selective inhibition of cyclic nucleotide phosphodiesterase isozymes in canine tracheal smooth muscle. Mol Pharmacol. 1990 Feb;37(2):206–214. [PubMed] [Google Scholar]
- U'Prichard D. C., Bylund D. B., Snyder S. H. (+/-)-[3H]Epinephrine and (-)[3H]dihydroalprenolol binding to beta1- and beta2-noradrenergic receptors in brain, heart, and lung membranes. J Biol Chem. 1978 Jul 25;253(14):5090–5102. [PubMed] [Google Scholar]
- Ukena D., Jacobson K. A., Padgett W. L., Ayala C., Shamim M. T., Kirk K. L., Olsson R. O., Daly J. W. Species differences in structure-activity relationships of adenosine agonists and xanthine antagonists at brain A1 adenosine receptors. FEBS Lett. 1986 Dec 1;209(1):122–128. doi: 10.1016/0014-5793(86)81096-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verma A., Marangos P. J. Nitrobenzylthioinosine binding in brain: an interspecies study. Life Sci. 1985 Jan 21;36(3):283–290. doi: 10.1016/0024-3205(85)90071-2. [DOI] [PubMed] [Google Scholar]
- Williams M., Risley E. A. Characterization of the binding of [3H]muscimol, a potent gamma-aminobutyric acid agonist, to rat brain synaptosomal membranes using a filtration assay. J Neurochem. 1979 Mar;32(3):713–718. doi: 10.1111/j.1471-4159.1979.tb04553.x. [DOI] [PubMed] [Google Scholar]
- Zhou Q. Y., Li C., Olah M. E., Johnson R. A., Stiles G. L., Civelli O. Molecular cloning and characterization of an adenosine receptor: the A3 adenosine receptor. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7432–7436. doi: 10.1073/pnas.89.16.7432. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Calker D., Müller M., Hamprecht B. Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J Neurochem. 1979 Nov;33(5):999–1005. doi: 10.1111/j.1471-4159.1979.tb05236.x. [DOI] [PubMed] [Google Scholar]
- van der Ploeg I., Parkinson F. E., Fredholm B. B. Effect of pertussis toxin on radioligand binding to rat brain adenosine A1 receptors. J Neurochem. 1992 Apr;58(4):1221–1229. doi: 10.1111/j.1471-4159.1992.tb11332.x. [DOI] [PubMed] [Google Scholar]
