Abstract
1. The aim of this work was to investigate the effect of lipopolysaccharide (LPS) treatment on the relationship between the cytosolic Ca2+ ion concentration ([Ca2+]i) and contraction in rat resistance arteries, and the involvement of the L-arginine-nitric oxide (NO)-guanosine 3'-5' cyclic monophosphate (cyclic GMP) pathway in these effects. 2. [Ca2+]i and tension were simultaneously recorded in small mesenteric arteries removed from rats 4 h after intraperitoneal injection of E. coli LPS (30 mg kg-1) or solvent. Cyclic GMP was assayed in vessels submitted to identical treatments. 3. Basal [Ca2+]i was higher in vessels from LPS-treated rats compared to controls. LPS did not modify the concentration-contraction curve of noradrenaline. However, the increase in basal [Ca2+]i produced by LPS resulted in a shift of the noradrenaline [Ca2+]i-contraction curve to higher [Ca2+]i concentrations. 4. L-Arginine (300 microM) relaxed noradrenaline (10 microM) pre-contracted arteries from LPS-treated but not from control rats. This effect of L-arginine was reversed by two inhibitors of NO synthase: N omega-nitro-L-arginine-methyl-ester (L-NAME, 1 mM) and S-methyl-isothiourea (SMT, 0.1 mM). Both the relaxing effect of L-arginine and its reversal by L-NAME or SMT occurred without any change in [Ca2+]i. 5. LPS treatment did not modify the cyclic GMP content of the small mesenteric arteries. In arteries removed from LPS-treated rats but not from controls, addition of L-arginine (300 microM) was associated with a significant increase in cyclic GMP content, an effect which was prevented by both L-NAME (1 mM) and SMT (0.1 mM). 6. L-NAME (1 mM) produced a greater reduction in cyclic GMP content than SMT (0.1 mM) in control vessels exposed to L-arginine (300 microM). Under the same conditions, SMT produced a larger decrease in cyclic GMP level than L-NAME in arteries taken from LPS-treated rats, consistent with selective inhibition by SMT of the inducible NO-synthase after LPS. 7. These results show that LPS produced two effects in small mesenteric arteries: (i) alterations in Ca2+ handling and a decreased sensitivity of myofilaments to Ca2+, (ii) induction of NO-synthase activity resulting in exogenous L-arginine-dependent production of NO and cyclic GMP accumulation. Both effects are likely to be involved in the hyporeactivity induced by LPS in resistance arteries.
Full text
PDF![1218](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b40f/1909595/bb159aa7bba3/brjpharm00084-0141.png)
![1219](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b40f/1909595/88ca577697ce/brjpharm00084-0142.png)
![1220](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b40f/1909595/79a8043ad269/brjpharm00084-0143.png)
![1221](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b40f/1909595/31c75208c291/brjpharm00084-0144.png)
![1222](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b40f/1909595/1ba2d8fdef23/brjpharm00084-0145.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andriantsitohaina R., Lagaud G. J., Andre A., Muller B., Stoclet J. C. Effects of cGMP on calcium handling in ATP-stimulated rat resistance arteries. Am J Physiol. 1995 Mar;268(3 Pt 2):H1223–H1231. doi: 10.1152/ajpheart.1995.268.3.H1223. [DOI] [PubMed] [Google Scholar]
- Beutler B., Kruys V. Lipopolysaccharide signal transduction, regulation of tumor necrosis factor biosynthesis, and signaling by tumor necrosis factor itself. J Cardiovasc Pharmacol. 1995;25 (Suppl 2):S1–S8. doi: 10.1097/00005344-199500252-00002. [DOI] [PubMed] [Google Scholar]
- Bolotina V. M., Najibi S., Palacino J. J., Pagano P. J., Cohen R. A. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature. 1994 Apr 28;368(6474):850–853. doi: 10.1038/368850a0. [DOI] [PubMed] [Google Scholar]
- Cailla H. L., Vannier C. J., Delaage M. A. Guanosine 3', 5'-cyclicmonophosphate assay at 10(-15)-mole level. Anal Biochem. 1976 Jan;70(1):195–202. doi: 10.1016/s0378-5173(83)90100-x. [DOI] [PubMed] [Google Scholar]
- Fleming I., Julou-Schaeffer G., Gray G. A., Parratt J. R., Stoclet J. C. Evidence that an L-arginine/nitric oxide dependent elevation of tissue cyclic GMP content is involved in depression of vascular reactivity by endotoxin. Br J Pharmacol. 1991 May;103(1):1047–1052. doi: 10.1111/j.1476-5381.1991.tb12298.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Himpens B., Matthijs G., Somlyo A. P. Desensitization to cytoplasmic Ca2+ and Ca2+ sensitivities of guinea-pig ileum and rabbit pulmonary artery smooth muscle. J Physiol. 1989 Jun;413:489–503. doi: 10.1113/jphysiol.1989.sp017665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hotchkiss R. S., Karl I. E. Dantrolene ameliorates the metabolic hallmarks of sepsis in rats and improves survival in a mouse model of endotoxemia. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3039–3043. doi: 10.1073/pnas.91.8.3039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Julou-Schaeffer G., Gray G. A., Fleming I., Schott C., Parratt J. R., Stoclet J. C. Loss of vascular responsiveness induced by endotoxin involves L-arginine pathway. Am J Physiol. 1990 Oct;259(4 Pt 2):H1038–H1043. doi: 10.1152/ajpheart.1990.259.4.H1038. [DOI] [PubMed] [Google Scholar]
- Mitchell J. A., Kohlhaas K. L., Sorrentino R., Warner T. D., Murad F., Vane J. R. Induction by endotoxin of nitric oxide synthase in the rat mesentery: lack of effect on action of vasoconstrictors. Br J Pharmacol. 1993 May;109(1):265–270. doi: 10.1111/j.1476-5381.1993.tb13563.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moncada S., Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993 Dec 30;329(27):2002–2012. doi: 10.1056/NEJM199312303292706. [DOI] [PubMed] [Google Scholar]
- Mulvany M. J., Halpern W. Contractile properties of small arterial resistance vessels in spontaneously hypertensive and normotensive rats. Circ Res. 1977 Jul;41(1):19–26. doi: 10.1161/01.res.41.1.19. [DOI] [PubMed] [Google Scholar]
- Osol G. Mechanotransduction by vascular smooth muscle. J Vasc Res. 1995 Sep-Oct;32(5):275–292. doi: 10.1159/000159102. [DOI] [PubMed] [Google Scholar]
- Portolés M. T., Ainaga M. J., Municio A. M., Pagani R. Intracellular calcium and pH alterations induced by Escherichia coli endotoxin in rat hepatocytes. Biochim Biophys Acta. 1991 Mar 19;1092(1):1–6. doi: 10.1016/0167-4889(91)90170-3. [DOI] [PubMed] [Google Scholar]
- Schneider F., Schott C., Stoclet J. C., Julou-Schaeffer G. L-arginine induces relaxation of small mesenteric arteries from endotoxin-treated rats. Eur J Pharmacol. 1992 Feb 11;211(2):269–272. doi: 10.1016/0014-2999(92)90539-g. [DOI] [PubMed] [Google Scholar]
- Shah A. M., Spurgeon H. A., Sollott S. J., Talo A., Lakatta E. G. 8-bromo-cGMP reduces the myofilament response to Ca2+ in intact cardiac myocytes. Circ Res. 1994 May;74(5):970–978. doi: 10.1161/01.res.74.5.970. [DOI] [PubMed] [Google Scholar]
- Song S. K., Karl I. E., Ackerman J. J., Hotchkiss R. S. Increased intracellular Ca2+: a critical link in the pathophysiology of sepsis? Proc Natl Acad Sci U S A. 1993 May 1;90(9):3933–3937. doi: 10.1073/pnas.90.9.3933. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Southan G. J., Szabó C., Thiemermann C. Isothioureas: potent inhibitors of nitric oxide synthases with variable isoform selectivity. Br J Pharmacol. 1995 Jan;114(2):510–516. doi: 10.1111/j.1476-5381.1995.tb13256.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stern M. D., Lakatta E. G. Excitation-contraction coupling in the heart: the state of the question. FASEB J. 1992 Sep;6(12):3092–3100. doi: 10.1096/fasebj.6.12.1325933. [DOI] [PubMed] [Google Scholar]
- Zaloga G. P., Washburn D., Black K. W., Prielipp R. Human sepsis increases lymphocyte intracellular calcium. Crit Care Med. 1993 Feb;21(2):196–202. doi: 10.1097/00003246-199302000-00009. [DOI] [PubMed] [Google Scholar]