Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Jul;118(5):1161–1170. doi: 10.1111/j.1476-5381.1996.tb15519.x

Sequential onset of three 5-HT receptors during the 5-hydroxytryptaminergic differentiation of the murine 1C11 cell line.

O Kellermann 1, S Loric 1, L Maroteaux 1, J M Launay 1
PMCID: PMC1909597  PMID: 8818339

Abstract

1. The murine 1C11 clone, which derives from a multipotential embryonal carcinoma cell line, has the features of a neuroectodermal precursor. When cultured in the presence of dibutyryl cyclic AMP, the 1C11 cells extend bipolar extensions and express neurone-associated markers. After 4 days, the resulting cells have acquired the ability to synthesize, take up, store and catabolize 5-hydroxytryptamine (5-HT). We have thus investigated the presence of 5-HT receptors during the 5-hydroxytryptaminergic differentiation of this inducible 1C11 cell line. 2. As shown by the binding of [125I]-GTI and the CGS 12066-dependent inhibition of the forskolin-induced cyclic AMP production, functional 5-HT1B/1D receptors become expressed on day 2 of 1C11 cell differentiation. The density of these receptors remained unchanged until day 4. 3. The same holds true for the 5-HT2B receptor, also identified by its pharmacological profile and its positive coupling to the phosphoinositide cascade. 4. On day 4 of 1C11 cell differentiation, a third 5-HT receptor, pharmacologically and functionally similar to 5-HT2A, had become induced. 5. Strikingly, the amounts of each transcript encoding 5-HT1B, 5-HT2A and 5-HT2B receptor did not very significantly during the time course of the 1C11 5-hydroxytryptaminergic differentiation. 6. The clone 1C11 may thus provide a useful in vitro model for studying regulation(s) between multiple G-linked receptors as well as the possible role of 5-HT upon the expression of a complete 5-hydroxytryptamine phenotype.

Full text

PDF
1161

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adham N., Kao H. T., Schecter L. E., Bard J., Olsen M., Urquhart D., Durkin M., Hartig P. R., Weinshank R. L., Branchek T. A. Cloning of another human serotonin receptor (5-HT1F): a fifth 5-HT1 receptor subtype coupled to the inhibition of adenylate cyclase. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):408–412. doi: 10.1073/pnas.90.2.408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adham N., Romanienko P., Hartig P., Weinshank R. L., Branchek T. The rat 5-hydroxytryptamine1B receptor is the species homologue of the human 5-hydroxytryptamine1D beta receptor. Mol Pharmacol. 1992 Jan;41(1):1–7. [PubMed] [Google Scholar]
  3. Blue M. E., Yagaloff K. A., Mamounas L. A., Hartig P. R., Molliver M. E. Correspondence between 5-HT2 receptors and serotonergic axons in rat neocortex. Brain Res. 1988 Jun 21;453(1-2):315–328. doi: 10.1016/0006-8993(88)90172-2. [DOI] [PubMed] [Google Scholar]
  4. Boulenguez P., Segu L., Chauveau J., Morel A., Lanoir J., Delaage M. Biochemical and pharmacological characterization of serotonin-O-carboxymethylglycyl[125I]iodotyrosinamide, a new radioiodinated probe for 5-HT1B and 5-HT1D binding sites. J Neurochem. 1992 Mar;58(3):951–959. doi: 10.1111/j.1471-4159.1992.tb09348.x. [DOI] [PubMed] [Google Scholar]
  5. Bruinvels A. T., Lery H., Nozulak J., Palacios J. M., Hoyer D. 5-HT1D binding sites in various species: similar pharmacological profile in dog, monkey, calf, guinea-pig and human brain membranes. Naunyn Schmiedebergs Arch Pharmacol. 1992 Sep;346(3):243–248. doi: 10.1007/BF00173535. [DOI] [PubMed] [Google Scholar]
  6. Buc-Caron M. H., Launay J. M., Lamblin D., Kellermann O. Serotonin uptake, storage, and synthesis in an immortalized committed cell line derived from mouse teratocarcinoma. Proc Natl Acad Sci U S A. 1990 Mar;87(5):1922–1926. doi: 10.1073/pnas.87.5.1922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carlsson A., Kehr W., Lindqvist M., Magnusson T., Atack C. V. Regulation of monoamine metabolism in the central nervous system. Pharmacol Rev. 1972 Jun;24(2):371–384. [PubMed] [Google Scholar]
  8. Choi D. S., Colas J. F., Kellermann O., Loric S., Launay J. M., Rosay P., Maroteaux L. The mouse 5-HT2B receptor: possible involvement in trophic functions of serotonin. Cell Mol Biol (Noisy-le-grand) 1994 May;40(3):403–411. [PubMed] [Google Scholar]
  9. Colas J. F., Launay J. M., Kellermann O., Rosay P., Maroteaux L. Drosophila 5-HT2 serotonin receptor: coexpression with fushi-tarazu during segmentation. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5441–5445. doi: 10.1073/pnas.92.12.5441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Da Prada M., Cesura A. M., Launay J. M., Richards J. G. Platelets as a model for neurones? Experientia. 1988 Feb 15;44(2):115–126. doi: 10.1007/BF01952193. [DOI] [PubMed] [Google Scholar]
  11. Eaton M. J., Staley J. K., Globus M. Y., Whittemore S. R. Developmental regulation of early serotonergic neuronal differentiation: the role of brain-derived neurotrophic factor and membrane depolarization. Dev Biol. 1995 Jul;170(1):169–182. doi: 10.1006/dbio.1995.1205. [DOI] [PubMed] [Google Scholar]
  12. Euvrard C., Boissier J. R. Biochemical assessment of the central 5-HT agonist activity of RU 24969 (a piperidinyl indole). Eur J Pharmacol. 1980 Apr 11;63(1):65–72. doi: 10.1016/0014-2999(80)90117-x. [DOI] [PubMed] [Google Scholar]
  13. Fargin A., Raymond J. R., Lohse M. J., Kobilka B. K., Caron M. G., Lefkowitz R. J. The genomic clone G-21 which resembles a beta-adrenergic receptor sequence encodes the 5-HT1A receptor. Nature. 1988 Sep 22;335(6188):358–360. doi: 10.1038/335358a0. [DOI] [PubMed] [Google Scholar]
  14. Foguet M., Hoyer D., Pardo L. A., Parekh A., Kluxen F. W., Kalkman H. O., Stühmer W., Lübbert H. Cloning and functional characterization of the rat stomach fundus serotonin receptor. EMBO J. 1992 Sep;11(9):3481–3487. doi: 10.1002/j.1460-2075.1992.tb05427.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gerald C., Adham N., Kao H. T., Olsen M. A., Laz T. M., Schechter L. E., Bard J. A., Vaysse P. J., Hartig P. R., Branchek T. A. The 5-HT4 receptor: molecular cloning and pharmacological characterization of two splice variants. EMBO J. 1995 Jun 15;14(12):2806–2815. doi: 10.1002/j.1460-2075.1995.tb07280.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Glatt C. E., Snowman A. M., Sibley D. R., Snyder S. H. Clozapine: selective labeling of sites resembling 5HT6 serotonin receptors may reflect psychoactive profile. Mol Med. 1995 May;1(4):398–406. [PMC free article] [PubMed] [Google Scholar]
  17. Hamblin M. W., Metcalf M. A., McGuffin R. W., Karpells S. Molecular cloning and functional characterization of a human 5-HT1B serotonin receptor: a homologue of the rat 5-HT1B receptor with 5-HT1D-like pharmacological specificity. Biochem Biophys Res Commun. 1992 Apr 30;184(2):752–759. doi: 10.1016/0006-291x(92)90654-4. [DOI] [PubMed] [Google Scholar]
  18. Hoyer D., Clarke D. E., Fozard J. R., Hartig P. R., Martin G. R., Mylecharane E. J., Saxena P. R., Humphrey P. P. International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol Rev. 1994 Jun;46(2):157–203. [PubMed] [Google Scholar]
  19. Julius D., MacDermott A. B., Axel R., Jessell T. M. Molecular characterization of a functional cDNA encoding the serotonin 1c receptor. Science. 1988 Jul 29;241(4865):558–564. doi: 10.1126/science.3399891. [DOI] [PubMed] [Google Scholar]
  20. Kellermann O., Buc-Caron M. H., Gaillard J. Immortalization of precursors of endodermal, neuroectodermal and mesodermal lineages, following the introduction of the simian virus (SV40) early region into F9 cells. Differentiation. 1987;35(3):197–205. doi: 10.1111/j.1432-0436.1987.tb00169.x. [DOI] [PubMed] [Google Scholar]
  21. Kellermann O., Buc-Caron M. H., Marie P. J., Lamblin D., Jacob F. An immortalized osteogenic cell line derived from mouse teratocarcinoma is able to mineralize in vivo and in vitro. J Cell Biol. 1990 Jan;110(1):123–132. doi: 10.1083/jcb.110.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kellermann O., Kelly F. Immortalization of early embryonic cell derivatives after the transfer of the early region of simian virus 40 into F9 teratocarcinoma cells. Differentiation. 1986;32(1):74–81. doi: 10.1111/j.1432-0436.1986.tb00558.x. [DOI] [PubMed] [Google Scholar]
  23. Lauder J. M. Neurotransmitters as growth regulatory signals: role of receptors and second messengers. Trends Neurosci. 1993 Jun;16(6):233–240. doi: 10.1016/0166-2236(93)90162-f. [DOI] [PubMed] [Google Scholar]
  24. Lauder J. M. Ontogeny of the serotonergic system in the rat: serotonin as a developmental signal. Ann N Y Acad Sci. 1990;600:297–314. doi: 10.1111/j.1749-6632.1990.tb16891.x. [DOI] [PubMed] [Google Scholar]
  25. Loric S., Launay J. M., Colas J. F., Maroteaux L. New mouse 5-HT2-like receptor. Expression in brain, heart and intestine. FEBS Lett. 1992 Nov 9;312(2-3):203–207. doi: 10.1016/0014-5793(92)80936-b. [DOI] [PubMed] [Google Scholar]
  26. Loric S., Maroteaux L., Kellermann O., Launay J. M. Functional serotonin-2B receptors are expressed by a teratocarcinoma-derived cell line during serotoninergic differentiation. Mol Pharmacol. 1995 Mar;47(3):458–466. [PubMed] [Google Scholar]
  27. Maroteaux L., Saudou F., Amlaiky N., Boschert U., Plassat J. L., Hen R. Mouse 5HT1B serotonin receptor: cloning, functional expression, and localization in motor control centers. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):3020–3024. doi: 10.1073/pnas.89.7.3020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Matthes H., Boschert U., Amlaiky N., Grailhe R., Plassat J. L., Muscatelli F., Mattei M. G., Hen R. Mouse 5-hydroxytryptamine5A and 5-hydroxytryptamine5B receptors define a new family of serotonin receptors: cloning, functional expression, and chromosomal localization. Mol Pharmacol. 1993 Mar;43(3):313–319. [PubMed] [Google Scholar]
  29. Middlemiss D. N. The putative 5-HT1 receptor agonist, RU 24969, inhibits the efflux of 5-hydroxytryptamine from rat frontal cortex slices by stimulation of the 5-HT autoreceptor. J Pharm Pharmacol. 1985 Jun;37(6):434–437. doi: 10.1111/j.2042-7158.1985.tb03032.x. [DOI] [PubMed] [Google Scholar]
  30. Monsma F. J., Jr, Shen Y., Ward R. P., Hamblin M. W., Sibley D. R. Cloning and expression of a novel serotonin receptor with high affinity for tricyclic psychotropic drugs. Mol Pharmacol. 1993 Mar;43(3):320–327. [PubMed] [Google Scholar]
  31. Morilak D. A., Ciaranello R. D. Ontogeny of 5-hydroxytryptamine2 receptor immunoreactivity in the developing rat brain. Neuroscience. 1993 Aug;55(3):869–880. doi: 10.1016/0306-4522(93)90447-n. [DOI] [PubMed] [Google Scholar]
  32. Plassat J. L., Amlaiky N., Hen R. Molecular cloning of a mammalian serotonin receptor that activates adenylate cyclase. Mol Pharmacol. 1993 Aug;44(2):229–236. [PubMed] [Google Scholar]
  33. Pritchett D. B., Bach A. W., Wozny M., Taleb O., Dal Toso R., Shih J. C., Seeburg P. H. Structure and functional expression of cloned rat serotonin 5HT-2 receptor. EMBO J. 1988 Dec 20;7(13):4135–4140. doi: 10.1002/j.1460-2075.1988.tb03308.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ramamoorthy S., Bauman A. L., Moore K. R., Han H., Yang-Feng T., Chang A. S., Ganapathy V., Blakely R. D. Antidepressant- and cocaine-sensitive human serotonin transporter: molecular cloning, expression, and chromosomal localization. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2542–2546. doi: 10.1073/pnas.90.6.2542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tsou A. P., Kosaka A., Bach C., Zuppan P., Yee C., Tom L., Alvarez R., Ramsey S., Bonhaus D. W., Stefanich E. Cloning and expression of a 5-hydroxytryptamine7 receptor positively coupled to adenylyl cyclase. J Neurochem. 1994 Aug;63(2):456–464. doi: 10.1046/j.1471-4159.1994.63020456.x. [DOI] [PubMed] [Google Scholar]
  36. Vandenbergh D. J., Mori N., Anderson D. J. Co-expression of multiple neurotransmitter enzyme genes in normal and immortalized sympathoadrenal progenitor cells. Dev Biol. 1991 Nov;148(1):10–22. doi: 10.1016/0012-1606(91)90313-r. [DOI] [PubMed] [Google Scholar]
  37. Voigt M. M., Laurie D. J., Seeburg P. H., Bach A. Molecular cloning and characterization of a rat brain cDNA encoding a 5-hydroxytryptamine1B receptor. EMBO J. 1991 Dec;10(13):4017–4023. doi: 10.1002/j.1460-2075.1991.tb04977.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wainscott D. B., Cohen M. L., Schenck K. W., Audia J. E., Nissen J. S., Baez M., Kursar J. D., Lucaites V. L., Nelson D. L. Pharmacological characteristics of the newly cloned rat 5-hydroxytryptamine2F receptor. Mol Pharmacol. 1993 Mar;43(3):419–426. [PubMed] [Google Scholar]
  39. Weinshank R. L., Zgombick J. M., Macchi M. J., Branchek T. A., Hartig P. R. Human serotonin 1D receptor is encoded by a subfamily of two distinct genes: 5-HT1D alpha and 5-HT1D beta. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3630–3634. doi: 10.1073/pnas.89.8.3630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wright D. E., Seroogy K. B., Lundgren K. H., Davis B. M., Jennes L. Comparative localization of serotonin1A, 1C, and 2 receptor subtype mRNAs in rat brain. J Comp Neurol. 1995 Jan 16;351(3):357–373. doi: 10.1002/cne.903510304. [DOI] [PubMed] [Google Scholar]
  41. Zgombick J. M., Schechter L. E., Macchi M., Hartig P. R., Branchek T. A., Weinshank R. L. Human gene S31 encodes the pharmacologically defined serotonin 5-hydroxytryptamine1E receptor. Mol Pharmacol. 1992 Aug;42(2):180–185. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES