Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Dec;70(12):8660–8668. doi: 10.1128/jvi.70.12.8660-8668.1996

Replication and packaging of coronavirus infectious bronchitis virus defective RNAs lacking a long open reading frame.

Z Pénzes 1, C Wroe 1, T D Brown 1, P Britton 1, D Cavanagh 1
PMCID: PMC190960  PMID: 8970992

Abstract

The construction of a full-length clone of the avian coronavirus infectious bronchitis virus (IBV) defective RNA (D-RNA), CD-91 (9,080 nucleotides [Z. Penzes et al., Virology 203:286-293]), downstream of the bacteriophage T7 promoter is described. Electroporation of in vitro T7-transcribed CD-91 RNA into IBV helper virus-infected primary chick kidney cells resulted in the production of CD-91 RNA as a replicating D-RNA in subsequent passages. Three CD-91 deletion mutants were constructed--CD-44, CD-58, and CD-61--in which 4,639, 3,236, and 2,953 nucleotides, respectively, were removed from CD-91, resulting in the truncation of the CD-91 long open reading frame (ORF) from 6,465 to 1,311, 1,263, or 2,997 nucleotides in CD-44, CD-58, or CD-61, respectively. Electroporation of in vitro T7-transcribed RNA from the three constructs into IBV helper virus-infected cells resulted in the replication and packaging of CD-58 and CD-61 but not CD-44 RNA. The ORF of CD-61 was further truncated by the insertion of stop codons into the CD-61 sequence by PCR mutagenesis, resulting in constructs CD-61T11 (ORF: nucleotides 996 to 1,058, encoding 20 amino acids), CD-61T22 (ORF: nucleotides 996 to 2,294, encoding 432 amino acids), and CD-61T24 (ORF: nucleotides 996 to 2,450, encoding 484 amino acids), all of which were replicated and packaged to the same levels as observed for either CD-61 or CD-91. Analysis of the D-RNAs showed that the CD-91- or CD-61-specific long ORFs had not been restored. Our data indicate that IBV D-RNAs based on the natural D-RNA, CD-91, do not require a long ORF for efficient replication. In addition, a 1.4-kb sequence, corresponding to IBV sequence at the 5' end of the 1b gene, may be involved in the packaging of IBV D-RNAs or form part of a cis-acting replication element.

Full Text

The Full Text of this article is available as a PDF (356.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boursnell M. E., Brown T. D., Foulds I. J., Green P. F., Tomley F. M., Binns M. M. Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus. J Gen Virol. 1987 Jan;68(Pt 1):57–77. doi: 10.1099/0022-1317-68-1-57. [DOI] [PubMed] [Google Scholar]
  2. Chang R. Y., Brian D. A. cis Requirement for N-specific protein sequence in bovine coronavirus defective interfering RNA replication. J Virol. 1996 Apr;70(4):2201–2207. doi: 10.1128/jvi.70.4.2201-2207.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chang R. Y., Hofmann M. A., Sethna P. B., Brian D. A. A cis-acting function for the coronavirus leader in defective interfering RNA replication. J Virol. 1994 Dec;68(12):8223–8231. doi: 10.1128/jvi.68.12.8223-8231.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hiscox J. A., Mawditt K. L., Cavanagh D., Britton P. Investigation of the control of coronavirus subgenomic mRNA transcription by using T7-generated negative-sense RNA transcripts. J Virol. 1995 Oct;69(10):6219–6227. doi: 10.1128/jvi.69.10.6219-6227.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Huang A. S., Baltimore D. Defective viral particles and viral disease processes. Nature. 1970 Apr 25;226(5243):325–327. doi: 10.1038/226325a0. [DOI] [PubMed] [Google Scholar]
  6. Kim Y. N., Jeong Y. S., Makino S. Analysis of cis-acting sequences essential for coronavirus defective interfering RNA replication. Virology. 1993 Nov;197(1):53–63. doi: 10.1006/viro.1993.1566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kim Y. N., Lai M. M., Makino S. Generation and selection of coronavirus defective interfering RNA with large open reading frame by RNA recombination and possible editing. Virology. 1993 May;194(1):244–253. doi: 10.1006/viro.1993.1255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kozak M. Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol Rev. 1983 Mar;47(1):1–45. doi: 10.1128/mr.47.1.1-45.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell. 1986 Jan 31;44(2):283–292. doi: 10.1016/0092-8674(86)90762-2. [DOI] [PubMed] [Google Scholar]
  10. Kozak M. The scanning model for translation: an update. J Cell Biol. 1989 Feb;108(2):229–241. doi: 10.1083/jcb.108.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Liao C. L., Lai M. M. A cis-acting viral protein is not required for the replication of a coronavirus defective-interfering RNA. Virology. 1995 Jun 1;209(2):428–436. doi: 10.1006/viro.1995.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lin Y. J., Lai M. M. Deletion mapping of a mouse hepatitis virus defective interfering RNA reveals the requirement of an internal and discontiguous sequence for replication. J Virol. 1993 Oct;67(10):6110–6118. doi: 10.1128/jvi.67.10.6110-6118.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Makino S., Fujioka N., Fujiwara K. Structure of the intracellular defective viral RNAs of defective interfering particles of mouse hepatitis virus. J Virol. 1985 May;54(2):329–336. doi: 10.1128/jvi.54.2.329-336.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Makino S., Shieh C. K., Keck J. G., Lai M. M. Defective-interfering particles of murine coronavirus: mechanism of synthesis of defective viral RNAs. Virology. 1988 Mar;163(1):104–111. doi: 10.1016/0042-6822(88)90237-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Makino S., Shieh C. K., Soe L. H., Baker S. C., Lai M. M. Primary structure and translation of a defective interfering RNA of murine coronavirus. Virology. 1988 Oct;166(2):550–560. doi: 10.1016/0042-6822(88)90526-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Makino S., Taguchi F., Fujiwara K. Defective interfering particles of mouse hepatitis virus. Virology. 1984 Feb;133(1):9–17. doi: 10.1016/0042-6822(84)90420-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Makino S., Yokomori K., Lai M. M. Analysis of efficiently packaged defective interfering RNAs of murine coronavirus: localization of a possible RNA-packaging signal. J Virol. 1990 Dec;64(12):6045–6053. doi: 10.1128/jvi.64.12.6045-6053.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Meinkoth J., Wahl G. Hybridization of nucleic acids immobilized on solid supports. Anal Biochem. 1984 May 1;138(2):267–284. doi: 10.1016/0003-2697(84)90808-x. [DOI] [PubMed] [Google Scholar]
  19. Muhlrad D., Parker R. Premature translational termination triggers mRNA decapping. Nature. 1994 Aug 18;370(6490):578–581. doi: 10.1038/370578a0. [DOI] [PubMed] [Google Scholar]
  20. Méndez A., Smerdou C., Izeta A., Gebauer F., Enjuanes L. Molecular characterization of transmissible gastroenteritis coronavirus defective interfering genomes: packaging and heterogeneity. Virology. 1996 Mar 15;217(2):495–507. doi: 10.1006/viro.1996.0144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Penzes Z., Tibbles K., Shaw K., Britton P., Brown T. D., Cavanagh D. Characterization of a replicating and packaged defective RNA of avian coronavirus infectious bronchitis virus. Virology. 1994 Sep;203(2):286–293. doi: 10.1006/viro.1994.1486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pulak R., Anderson P. mRNA surveillance by the Caenorhabditis elegans smg genes. Genes Dev. 1993 Oct;7(10):1885–1897. doi: 10.1101/gad.7.10.1885. [DOI] [PubMed] [Google Scholar]
  23. de Groot R. J., van der Most R. G., Spaan W. J. The fitness of defective interfering murine coronavirus DI-a and its derivatives is decreased by nonsense and frameshift mutations. J Virol. 1992 Oct;66(10):5898–5905. doi: 10.1128/jvi.66.10.5898-5905.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. van der Most R. G., Bredenbeek P. J., Spaan W. J. A domain at the 3' end of the polymerase gene is essential for encapsidation of coronavirus defective interfering RNAs. J Virol. 1991 Jun;65(6):3219–3226. doi: 10.1128/jvi.65.6.3219-3226.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. van der Most R. G., Luytjes W., Rutjes S., Spaan W. J. Translation but not the encoded sequence is essential for the efficient propagation of the defective interfering RNAs of the coronavirus mouse hepatitis virus. J Virol. 1995 Jun;69(6):3744–3751. doi: 10.1128/jvi.69.6.3744-3751.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES