Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Jul;118(5):1111–1118. doi: 10.1111/j.1476-5381.1996.tb15513.x

Reduction by inhibitors of mono(ADP-ribosyl)transferase of chemotaxis in human neutrophil leucocytes by inhibition of the assembly of filamentous actin.

J R Allport 1, L E Donnelly 1, B P Hayes 1, S Murray 1, N B Rendell 1, K P Ray 1, J MacDermot 1
PMCID: PMC1909602  PMID: 8818333

Abstract

1. Chemotaxis of human neutrophils is mediated by numerous agents [e.g. N-formyl-methionyl-leucyl-phenylalanine (FMLP) and platelet activating factor (PAF)] whose receptors are coupled to phospholipase C. However, the subsequent transduction pathway mediating cell movement remains obscure. We now propose involvement of mono(ADP-ribosyl)transferase activity in receptor-dependent chemotaxis. 2. Human neutrophils were isolated from whole blood and measurements were made of FMLP or PAF-dependent actin polymerization and chemotaxis. The activity of cell surface Arg-specific mono(ADP-ribosyl)transferase was also measured. Each of these activities was inhibited by vitamin K3 and similar IC50 values obtained (4.67 +/- 1.46 microM, 2.0 +/- 0.1 microM and 4.7 +/- 0.1 microM respectively). 3. There were similar close correlations between inhibition of (a) enzyme activity and (b) actin polymerization or chemotaxis by other known inhibitors of mono(ADP-ribosyl)transferase, namely vitamin K1, novobiocin, nicotinamide and the efficient pseudosubstrate, diethylamino(benzylidineamino)guanidine (DEA-BAG). 4. Intracellular Ca2+ was measured by laser scanning confocal microscopy with two fluorescent dyes (Fluo-3 and Fura-Red). Exposure of human neutrophils to FMLP or PAF was followed by transient increases in intracellular Ca2+ concentration, but the inhibitors of mono(ADP-ribosyl)transferase listed above had no effect on the magnitude of the response. 5. A panel of selective inhibitors of protein kinase C, tyrosine kinase, protein kinases A and G or phosphatases 1 and 2A showed no consistent inhibition of FMLP-dependent polymerization of actin. 6. We conclude that eukaryotic Arg-specific mono(ADP-ribosyl)transferase activity may be implicated in the transduction pathway mediating chemotaxis of human neutrophils, with involvement in the assembly of actin-containing cytoskeletal microfilaments.

Full text

PDF
1111

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramowitz J., Jena B. P. Evidence for a rabbit luteal ADP-ribosyltransferase activity which appears to be capable of activating adenylyl cyclase. Int J Biochem. 1991;23(5-6):549–559. doi: 10.1016/0020-711x(87)90049-8. [DOI] [PubMed] [Google Scholar]
  2. Aderem A. Signal transduction and the actin cytoskeleton: the roles of MARCKS and profilin. Trends Biochem Sci. 1992 Oct;17(10):438–443. doi: 10.1016/0968-0004(92)90016-3. [DOI] [PubMed] [Google Scholar]
  3. Banasik M., Komura H., Shimoyama M., Ueda K. Specific inhibitors of poly(ADP-ribose) synthetase and mono(ADP-ribosyl)transferase. J Biol Chem. 1992 Jan 25;267(3):1569–1575. [PubMed] [Google Scholar]
  4. Bearer E. L. Role of actin polymerization in cell locomotion: molecules and models. Am J Respir Cell Mol Biol. 1993 Jun;8(6):582–591. doi: 10.1165/ajrcmb/8.6.582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bengtsson T., Jaconi M. E., Gustafson M., Magnusson K. E., Theler J. M., Lew D. P., Stendahl O. Actin dynamics in human neutrophils during adhesion and phagocytosis is controlled by changes in intracellular free calcium. Eur J Cell Biol. 1993 Oct;62(1):49–58. [PubMed] [Google Scholar]
  6. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  7. Bouchelouche P. N., Ahnfelt-Rønne I., Thomsen M. K. LTD4 increases cytosolic free calcium and inositol phosphates in human neutrophils: inhibition by the novel LTD4 receptor antagonist, SR2640, and possible relation to modulation of chemotaxis. Agents Actions. 1990 Mar;29(3-4):299–307. doi: 10.1007/BF01966461. [DOI] [PubMed] [Google Scholar]
  8. Boulay F., Tardif M., Brouchon L., Vignais P. The human N-formylpeptide receptor. Characterization of two cDNA isolates and evidence for a new subfamily of G-protein-coupled receptors. Biochemistry. 1990 Dec 18;29(50):11123–11133. doi: 10.1021/bi00502a016. [DOI] [PubMed] [Google Scholar]
  9. Falk W., Goodwin R. H., Jr, Leonard E. J. A 48-well micro chemotaxis assembly for rapid and accurate measurement of leukocyte migration. J Immunol Methods. 1980;33(3):239–247. doi: 10.1016/0022-1759(80)90211-2. [DOI] [PubMed] [Google Scholar]
  10. Ferguson M. A. Colworth Medal Lecture. Glycosyl-phosphatidylinositol membrane anchors: the tale of a tail. Biochem Soc Trans. 1992 May;20(2):243–256. doi: 10.1042/bst0200243. [DOI] [PubMed] [Google Scholar]
  11. Formato M., Masala B., De Luca G. The levels of adenine nucleotides and pyridine coenzymes in red blood cells from the newborn, determined simultaneously by HPLC. Clin Chim Acta. 1990 Aug 15;189(2):131–137. doi: 10.1016/0009-8981(90)90083-5. [DOI] [PubMed] [Google Scholar]
  12. Gallin J. I., Seligmann B. E., Cramer E. B., Schiffmann E., Fletcher M. P. Effects of vitamin K on human neutrophil function. J Immunol. 1982 Mar;128(3):1399–1408. [PubMed] [Google Scholar]
  13. Gaudry M., Perianin A., Marquetty C., Hakim J. Negative effect of a protein kinase C inhibitor (H-7) on human polymorphonuclear neutrophil locomotion. Immunology. 1988 Apr;63(4):715–719. [PMC free article] [PubMed] [Google Scholar]
  14. Gerard N. P., Gerard C. The chemotactic receptor for human C5a anaphylatoxin. Nature. 1991 Feb 14;349(6310):614–617. doi: 10.1038/349614a0. [DOI] [PubMed] [Google Scholar]
  15. Haslett C., Guthrie L. A., Kopaniak M. M., Johnston R. B., Jr, Henson P. M. Modulation of multiple neutrophil functions by preparative methods or trace concentrations of bacterial lipopolysaccharide. Am J Pathol. 1985 Apr;119(1):101–110. [PMC free article] [PubMed] [Google Scholar]
  16. Hoffstein S. T., Manzi R. M., Razgaitis K. A., Bender P. E., Gleason J. Structural requirements for chemotactic activity of leukotriene B4 (LTB4). Prostaglandins. 1986 Feb;31(2):205–215. doi: 10.1016/0090-6980(86)90047-x. [DOI] [PubMed] [Google Scholar]
  17. Howard T. H., Meyer W. H. Chemotactic peptide modulation of actin assembly and locomotion in neutrophils. J Cell Biol. 1984 Apr;98(4):1265–1271. doi: 10.1083/jcb.98.4.1265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Howard T. H., Wang D. Calcium ionophore, phorbol ester, and chemotactic peptide-induced cytoskeleton reorganization in human neutrophils. J Clin Invest. 1987 May;79(5):1359–1364. doi: 10.1172/JCI112962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Keller H. U., Niggli V., Zimmermann A., Portmann R. The protein kinase C inhibitor H-7 activates human neutrophils: effect on shape, actin polymerization, fluid pinocytosis and locomotion. J Cell Sci. 1990 May;96(Pt 1):99–106. doi: 10.1242/jcs.96.1.99. [DOI] [PubMed] [Google Scholar]
  20. Lipp P., Niggli E. Ratiometric confocal Ca(2+)-measurements with visible wavelength indicators in isolated cardiac myocytes. Cell Calcium. 1993 May;14(5):359–372. doi: 10.1016/0143-4160(93)90040-d. [DOI] [PubMed] [Google Scholar]
  21. McMahon K. K., Piron K. J., Ha V. T., Fullerton A. T. Developmental and biochemical characteristics of the cardiac membrane-bound arginine-specific mono-ADP-ribosyltransferase. Biochem J. 1993 Aug 1;293(Pt 3):789–793. doi: 10.1042/bj2930789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Moss J., Stanley S. J. Histone-dependent and histone-independent forms of an ADP-ribosyltransferase from human and turkey erythrocytes. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4809–4812. doi: 10.1073/pnas.78.8.4809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mustelin T., Pösö H., Lapinjoki S. P., Gynther J., Andersson L. C. Growth signal transduction: rapid activation of covalently bound ornithine decarboxylase during phosphatidylinositol breakdown. Cell. 1987 Apr 24;49(2):171–176. doi: 10.1016/0092-8674(87)90557-5. [DOI] [PubMed] [Google Scholar]
  24. Nakamura M., Honda Z., Izumi T., Sakanaka C., Mutoh H., Minami M., Bito H., Seyama Y., Matsumoto T., Noma M. Molecular cloning and expression of platelet-activating factor receptor from human leukocytes. J Biol Chem. 1991 Oct 25;266(30):20400–20405. [PubMed] [Google Scholar]
  25. Okazaki I. J., Zolkiewska A., Nightingale M. S., Moss J. Immunological and structural conservation of mammalian skeletal muscle glycosylphosphatidylinositol-linked ADP-ribosyltransferases. Biochemistry. 1994 Nov 1;33(43):12828–12836. doi: 10.1021/bi00209a014. [DOI] [PubMed] [Google Scholar]
  26. Pezzi L., Marquez C., Toribio M. L., Martinez C. Translocation of alkaline phosphatase during the activation of B cells. Res Immunol. 1991 Feb;142(2):109–115. doi: 10.1016/0923-2494(91)90018-e. [DOI] [PubMed] [Google Scholar]
  27. Rankin P. W., Jacobson E. L., Benjamin R. C., Moss J., Jacobson M. K. Quantitative studies of inhibitors of ADP-ribosylation in vitro and in vivo. J Biol Chem. 1989 Mar 15;264(8):4312–4317. [PubMed] [Google Scholar]
  28. Ronzio R. A., Kronquist K. E., Lewis D. S., MacDonald R. J., Mohrlok S. H., O'Donnell J. J., Jr Glycoprotein synthesis in the adult rat pancreas. IV. Subcellular distribution of membrane glycoproteins. Biochim Biophys Acta. 1978 Mar 21;508(1):65–84. doi: 10.1016/0005-2736(78)90189-x. [DOI] [PubMed] [Google Scholar]
  29. Shakarjian M. P., Carchman R. A. Alteration of human granulocyte functional responses by menadione. Arch Biochem Biophys. 1990 Nov 15;283(1):1–11. doi: 10.1016/0003-9861(90)90604-w. [DOI] [PubMed] [Google Scholar]
  30. Sherman J. W., Mendelson M. A., Boggs J. M., Koo C. H., Goetzl E. J. Ligand-induced formation of the leukotriene B4 receptor-G protein complex of human polymorphonuclear leukocytes. J Cell Biochem. 1992 Apr;48(4):367–372. doi: 10.1002/jcb.240480405. [DOI] [PubMed] [Google Scholar]
  31. Soman G., Narayanan J., Martin B. L., Graves D. J. Use of substituted (benzylidineamino)guanidines in the study of guanidino group specific ADP-ribosyltransferase. Biochemistry. 1986 Jul 15;25(14):4113–4119. doi: 10.1021/bi00362a019. [DOI] [PubMed] [Google Scholar]
  32. Stossel T. P. On the crawling of animal cells. Science. 1993 May 21;260(5111):1086–1094. doi: 10.1126/science.8493552. [DOI] [PubMed] [Google Scholar]
  33. Thomas K. M., Taylor L., Navarro J. The interleukin-8 receptor is encoded by a neutrophil-specific cDNA clone, F3R. J Biol Chem. 1991 Aug 15;266(23):14839–14841. [PubMed] [Google Scholar]
  34. Tsuchiya M., Hara N., Yamada K., Osago H., Shimoyama M. Cloning and expression of cDNA for arginine-specific ADP-ribosyltransferase from chicken bone marrow cells. J Biol Chem. 1994 Nov 4;269(44):27451–27457. [PubMed] [Google Scholar]
  35. Ueda K., Hayaishi O. ADP-ribosylation. Annu Rev Biochem. 1985;54:73–100. doi: 10.1146/annurev.bi.54.070185.000445. [DOI] [PubMed] [Google Scholar]
  36. Wilkinson P. C., Haston W. S. Chemotaxis: an overview. Methods Enzymol. 1988;162:3–16. doi: 10.1016/0076-6879(88)62059-3. [DOI] [PubMed] [Google Scholar]
  37. Wilkinson P. C. Micropore filter methods for leukocyte chemotaxis. Methods Enzymol. 1988;162:38–50. doi: 10.1016/0076-6879(88)62061-1. [DOI] [PubMed] [Google Scholar]
  38. Wright T. M., Hoffman R. D., Nishijima J., Jakoi L., Snyderman R., Shin H. S. Leukocyte chemoattraction by 1,2-diacylglycerol. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1869–1873. doi: 10.1073/pnas.85.6.1869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zimmermann A., Gehr P., Keller H. U. Diacylglycerol-induced shape changes, movements and altered F-actin distribution in human neutrophils. J Cell Sci. 1988 Aug;90(Pt 4):657–666. doi: 10.1242/jcs.90.4.657. [DOI] [PubMed] [Google Scholar]
  40. Zolkiewska A., Moss J. Integrin alpha 7 as substrate for a glycosylphosphatidylinositol-anchored ADP-ribosyltransferase on the surface of skeletal muscle cells. J Biol Chem. 1993 Dec 5;268(34):25273–25276. [PubMed] [Google Scholar]
  41. Zolkiewska A., Nightingale M. S., Moss J. Molecular characterization of NAD:arginine ADP-ribosyltransferase from rabbit skeletal muscle. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11352–11356. doi: 10.1073/pnas.89.23.11352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. al-Mohanna F. A., Hallett M. B. Actin polymerization in neutrophils is triggered without a requirement for a rise in cytoplasmic Ca2+. Biochem J. 1990 Mar 15;266(3):669–674. doi: 10.1042/bj2660669. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES