Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 May;118(2):392–399. doi: 10.1111/j.1476-5381.1996.tb15415.x

Localization and activity of haem oxygenase and functional effects of carbon monoxide in the feline lower oesophageal sphincter.

L Ny 1, P Alm 1, P Ekström 1, B Larsson 1, L Grundemar 1, K E Andersson 1
PMCID: PMC1909618  PMID: 8735643

Abstract

1. In the feline lower oesophageal sphincter (LOS), the distribution of the carbon monoxide (CO) producing enzymes haem oxygenase (HO)-1 and -2 was studied by immunohistochemistry and confocal microscopy, the HO activity was measured and the possible role for CO as a mediator of relaxation was investigated. 2. HO-2 immunoreactivity was abundant in nerve cell bodies of the submucosal and myenteric plexus. Approximately 50% of the HO-2-containing myenteric cell bodies were also nitric oxide synthase- and vasoactive intestinal peptide (VIP)-immunoreactive. In addition, HO-2 immunoreactivity was seen in nerve fibres, in non-neuronal cells dispersed in the smooth muscle and in arterial endothelium. HO-1 immunoreactivity was confined to non-neuronal cells in the smooth muscle, similar to those positive for HO-2. 3. Activity of HO, measured as CO production, was observed in LOS homogenates at a rate of 1.00 +/- 0.05 nmol mg-1 protein h-1. This production was inhibited by the HO inhibitor, zinc protoporphyrin-IX (ZnPP). 4. In isolated circular smooth muscle strips of LOS, developing spontaneous tone, exogenously administered CO evoked a concentration-dependent relaxation reaching a maximum of 93 +/- 3%. This relaxation was accompanied by an increase in cyclic GMP, but not cyclic AMP levels. The relaxant response was attenuated by methylene blue, but unaffected by tetrodotoxin. Repeated exposure to CO resulted in a progressive reduction of the relaxant response. 5. ZnPP caused a rightward-shift of the concentration-response curves for the relaxant responses to VIP, peptide histidine isoleucine, and pituitary adenylate cyclase activating peptide 27. 6. ZnPP and tin protoporphyrin-IX (another inhibitor of HO) did not affect nonadrenergic, noncholinergic relaxations induced by electrical field stimulation. Nor did ZnPP affect relaxations induced by 3-morpholino-sydnonimine or forskolin. 7. The present findings, showing localization of HO immunoreactivity to both neuronal and nonneuronal cells of the feline LOS, ability of LOS to produce CO and a relaxant effect of CO in circular LOS muscle, suggest a role for CO as a peripheral messenger.

Full text

PDF
392

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  2. Cavallin-Ståhl E., Jönsson G. I., Lundh B. A new method for determination of microsomal haem oxygenase (EC 1.14.99.3) based on quantitation of carbon monoxide formation. Scand J Clin Lab Invest. 1978 Feb;38(1):69–76. doi: 10.3109/00365517809108405. [DOI] [PubMed] [Google Scholar]
  3. Cook M. N., Nakatsu K., Marks G. S., McLaughlin B. E., Vreman H. J., Stevenson D. K., Brien J. F. Heme oxygenase activity in the adult rat aorta and liver as measured by carbon monoxide formation. Can J Physiol Pharmacol. 1995 Apr;73(4):515–518. doi: 10.1139/y95-065. [DOI] [PubMed] [Google Scholar]
  4. Dawson T. M., Snyder S. H. Gases as biological messengers: nitric oxide and carbon monoxide in the brain. J Neurosci. 1994 Sep;14(9):5147–5159. doi: 10.1523/JNEUROSCI.14-09-05147.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dwyer B. E., Nishimura R. N., Lu S. Y. Differential localization of heme oxygenase and NADPH-diaphorase in spinal cord neurons. Neuroreport. 1995 May 9;6(7):973–976. doi: 10.1097/00001756-199505090-00006. [DOI] [PubMed] [Google Scholar]
  6. Ewing J. F., Raju V. S., Maines M. D. Induction of heart heme oxygenase-1 (HSP32) by hyperthermia: possible role in stress-mediated elevation of cyclic 3':5'-guanosine monophosphate. J Pharmacol Exp Ther. 1994 Oct;271(1):408–414. [PubMed] [Google Scholar]
  7. Furchgott R. F., Jothianandan D. Endothelium-dependent and -independent vasodilation involving cyclic GMP: relaxation induced by nitric oxide, carbon monoxide and light. Blood Vessels. 1991;28(1-3):52–61. doi: 10.1159/000158843. [DOI] [PubMed] [Google Scholar]
  8. Getchell M. L., Kulkarni-Narla A., Takami S., Albers K. M., Getchell T. V. Age-dependent phenotypic switching of mast cells in NGF-transgenic mice. Neuroreport. 1995 Jun 19;6(9):1261–1266. doi: 10.1097/00001756-199506090-00008. [DOI] [PubMed] [Google Scholar]
  9. Grundemar L., Johansson M. B., Ekelund M., Högestätt E. D. Haem oxygenase activity in blood vessel homogenates as measured by carbon monoxide production. Acta Physiol Scand. 1995 Feb;153(2):203–204. doi: 10.1111/j.1748-1716.1995.tb09852.x. [DOI] [PubMed] [Google Scholar]
  10. Ignarro L. J., Ballot B., Wood K. S. Regulation of soluble guanylate cyclase activity by porphyrins and metalloporphyrins. J Biol Chem. 1984 May 25;259(10):6201–6207. [PubMed] [Google Scholar]
  11. Johnson G. D., Nogueira Araujo G. M. A simple method of reducing the fading of immunofluorescence during microscopy. J Immunol Methods. 1981;43(3):349–350. doi: 10.1016/0022-1759(81)90183-6. [DOI] [PubMed] [Google Scholar]
  12. Linden D. J., Narasimhan K., Gurfel D. Protoporphyrins modulate voltage-gated Ca current in AtT-20 pituitary cells. J Neurophysiol. 1993 Dec;70(6):2673–2677. doi: 10.1152/jn.1993.70.6.2673. [DOI] [PubMed] [Google Scholar]
  13. Luo D., Vincent S. R. Metalloporphyrins inhibit nitric oxide-dependent cGMP formation in vivo. Eur J Pharmacol. 1994 May 17;267(3):263–267. doi: 10.1016/0922-4106(94)90149-x. [DOI] [PubMed] [Google Scholar]
  14. Maines M. D. Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J. 1988 Jul;2(10):2557–2568. [PubMed] [Google Scholar]
  15. Mayer B. Nitric oxide/cyclic GMP-mediated signal transduction. Ann N Y Acad Sci. 1994 Sep 15;733:357–364. doi: 10.1111/j.1749-6632.1994.tb17286.x. [DOI] [PubMed] [Google Scholar]
  16. Meffert M. K., Haley J. E., Schuman E. M., Schulman H., Madison D. V. Inhibition of hippocampal heme oxygenase, nitric oxide synthase, and long-term potentiation by metalloporphyrins. Neuron. 1994 Nov;13(5):1225–1233. doi: 10.1016/0896-6273(94)90060-4. [DOI] [PubMed] [Google Scholar]
  17. Morita T., Perrella M. A., Lee M. E., Kourembanas S. Smooth muscle cell-derived carbon monoxide is a regulator of vascular cGMP. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1475–1479. doi: 10.1073/pnas.92.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ny L., Alm P., Larsson B., Ekström P., Andersson K. E. Nitric oxide pathway in cat esophagus: localization of nitric oxide synthase and functional effects. Am J Physiol. 1995 Jan;268(1 Pt 1):G59–G70. doi: 10.1152/ajpgi.1995.268.1.G59. [DOI] [PubMed] [Google Scholar]
  19. Ny L., Andersson K. E., Grundemar L. Inhibition by zinc protoporphyrin-IX of receptor-mediated relaxation of the rat aorta in a manner distinct from inhibition of haem oxygenase. Br J Pharmacol. 1995 May;115(1):186–190. doi: 10.1111/j.1476-5381.1995.tb16337.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Prabhakar N. R., Dinerman J. L., Agani F. H., Snyder S. H. Carbon monoxide: a role in carotid body chemoreception. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):1994–1997. doi: 10.1073/pnas.92.6.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rand M. J., Li C. G. Nitric oxide as a neurotransmitter in peripheral nerves: nature of transmitter and mechanism of transmission. Annu Rev Physiol. 1995;57:659–682. doi: 10.1146/annurev.ph.57.030195.003303. [DOI] [PubMed] [Google Scholar]
  22. Rattan S., Chakder S. Inhibitory effect of CO on internal anal sphincter: heme oxygenase inhibitor inhibits NANC relaxation. Am J Physiol. 1993 Oct;265(4 Pt 1):G799–G804. doi: 10.1152/ajpgi.1993.265.4.G799. [DOI] [PubMed] [Google Scholar]
  23. Shinomura T., Nakao S., Mori K. Reduction of depolarization-induced glutamate release by heme oxygenase inhibitor: possible role of carbon monoxide in synaptic transmission. Neurosci Lett. 1994 Jan 31;166(2):131–134. doi: 10.1016/0304-3940(94)90468-5. [DOI] [PubMed] [Google Scholar]
  24. Stevens C. F., Wang Y. Reversal of long-term potentiation by inhibitors of haem oxygenase. Nature. 1993 Jul 8;364(6433):147–149. doi: 10.1038/364147a0. [DOI] [PubMed] [Google Scholar]
  25. Stone J. R., Marletta M. A. Soluble guanylate cyclase from bovine lung: activation with nitric oxide and carbon monoxide and spectral characterization of the ferrous and ferric states. Biochemistry. 1994 May 10;33(18):5636–5640. doi: 10.1021/bi00184a036. [DOI] [PubMed] [Google Scholar]
  26. Tøttrup A., Knudsen M. A., Hanberg Sørensen F., Glavind E. B. Pharmacological identification of different inhibitory mediators involved in the innervation of the internal anal sphincter. Br J Pharmacol. 1995 May;115(1):158–162. doi: 10.1111/j.1476-5381.1995.tb16333.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Utz J., Ullrich V. Carbon monoxide relaxes ileal smooth muscle through activation of guanylate cyclase. Biochem Pharmacol. 1991 Apr 15;41(8):1195–1201. doi: 10.1016/0006-2952(91)90658-r. [DOI] [PubMed] [Google Scholar]
  28. Verma A., Hirsch D. J., Glatt C. E., Ronnett G. V., Snyder S. H. Carbon monoxide: a putative neural messenger. Science. 1993 Jan 15;259(5093):381–384. doi: 10.1126/science.7678352. [DOI] [PubMed] [Google Scholar]
  29. Vincent S. R., Das S., Maines M. D. Brain heme oxygenase isoenzymes and nitric oxide synthase are co-localized in select neurons. Neuroscience. 1994 Nov;63(1):223–231. doi: 10.1016/0306-4522(94)90018-3. [DOI] [PubMed] [Google Scholar]
  30. Vreman H. J., Gillman M. J., Stevenson D. K. In vitro inhibition of adult rat intestinal heme oxygenase by metalloporphyrins. Pediatr Res. 1989 Oct;26(4):362–365. doi: 10.1203/00006450-198910000-00015. [DOI] [PubMed] [Google Scholar]
  31. Vreman H. J., Stevenson D. K. Heme oxygenase activity as measured by carbon monoxide production. Anal Biochem. 1988 Jan;168(1):31–38. doi: 10.1016/0003-2697(88)90006-1. [DOI] [PubMed] [Google Scholar]
  32. Wessendorf M. W., Elde R. P. Characterization of an immunofluorescence technique for the demonstration of coexisting neurotransmitters within nerve fibers and terminals. J Histochem Cytochem. 1985 Oct;33(10):984–994. doi: 10.1177/33.10.2413102. [DOI] [PubMed] [Google Scholar]
  33. Zhang J., Snyder S. H. Nitric oxide in the nervous system. Annu Rev Pharmacol Toxicol. 1995;35:213–233. doi: 10.1146/annurev.pa.35.040195.001241. [DOI] [PubMed] [Google Scholar]
  34. Zhuo M., Small S. A., Kandel E. R., Hawkins R. D. Nitric oxide and carbon monoxide produce activity-dependent long-term synaptic enhancement in hippocampus. Science. 1993 Jun 25;260(5116):1946–1950. doi: 10.1126/science.8100368. [DOI] [PubMed] [Google Scholar]
  35. Zygmunt P. M., Högestätt E. D., Grundemar L. Light-dependent effects of zinc protoporphyrin IX on endothelium-dependent relaxation resistant to N omega-nitro-L-arginine. Acta Physiol Scand. 1994 Oct;152(2):137–143. doi: 10.1111/j.1748-1716.1994.tb09793.x. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES