Abstract
1. The influence of (+/-)-8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) on haloperidol-induced increases in the dopamine metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and 4-hydroxy-3-methoxyphenylacetic acid (HVA), was measured in three microdissected brain regions of the rat following a quantitative assessment of catalepsy. 2. Haloperidol alone (2.66 mumol kg-1, i.p.) caused a robust cataleptic response. Given 30 min after haloperidol, 8-OH-DPAT (76 or 760 nmol kg-1, s.c.) prevented catalepsy in 30% and 100% of rats, respectively. 3. Haloperidol significantly increased the DOPAC (by 2 to 4 fold) and HVA (by 3 to 7 fold) contents of the caudate-putamen, nucleus accumbens and medial prefrontal cortex. Given alone, only the lower dose of 8-OH-DPAT caused a significant biochemical change, a doubling of cortical DOPAC. 4. In the cases where catalepsy was prevented by either dose of 8-OH-DPAT, the haloperidol-induced increases in DOPAC and HVA were consistently lower in the caudate-putamen. This pattern was true for the rise in cortical HVA but only in response to the lower dose of 8-OH-DPAT. In contrast, neither dose of 8-OH-DPAT was able to influence the haloperidol-induced rises in cortical DOPAC. In the nucleus accumbens, 8-OH-DPAT did not affect the haloperidol-induced increases in the dopamine metabolites, irrespective of the dose employed or the resulting behaviour. When catalepsy was not prevented, 8-OH-DPAT did not alter the neurochemical responses to haloperidol in any region. 5. These results suggest that part of the mechanism by which 8-OH-DPAT prevents haloperidol-induced catalepsy is reflected by a reversal of the compensatory increase in meso-striatal and/or meso-cortical dopamine neuronal activity that normally accompanies postsynaptic dopamine receptor blockade with haloperidol.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahlenius S., Hillegaart V., Wijkström A. Evidence for selective inhibition of limbic forebrain dopamine synthesis by 8-OH-DPAT in the rat. Naunyn Schmiedebergs Arch Pharmacol. 1989 May;339(5):551–556. doi: 10.1007/BF00167260. [DOI] [PubMed] [Google Scholar]
- Ahlenius S., Hillegaart V., Wijkström A. Increased dopamine turnover in the ventral striatum by 8-OH-DPAT administration in the rat. J Pharm Pharmacol. 1990 Apr;42(4):285–288. doi: 10.1111/j.2042-7158.1990.tb05410.x. [DOI] [PubMed] [Google Scholar]
- Arborelius L., Nomikos G. G., Hacksell U., Svensson T. H. (R)-8-OH-DPAT preferentially increases dopamine release in rat medial prefrontal cortex. Acta Physiol Scand. 1993 Aug;148(4):465–466. doi: 10.1111/j.1748-1716.1993.tb09584.x. [DOI] [PubMed] [Google Scholar]
- Arnt J., Hyttel J. Dopamine D-2 agonists with high and low efficacies: differentiation by behavioural techniques. J Neural Transm Gen Sect. 1990;80(1):33–50. doi: 10.1007/BF01245021. [DOI] [PubMed] [Google Scholar]
- Azmitia E. C., Segal M. An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. J Comp Neurol. 1978 Jun 1;179(3):641–667. doi: 10.1002/cne.901790311. [DOI] [PubMed] [Google Scholar]
- Baldessarini R. J., Tarsy D. Dopamine and the pathophysiology of dyskinesias induced by antipsychotic drugs. Annu Rev Neurosci. 1980;3:23–41. doi: 10.1146/annurev.ne.03.030180.000323. [DOI] [PubMed] [Google Scholar]
- Balsara J. J., Jadhav J. H., Chandorkar A. G. Effect of drugs influencing central serotonergic mechanisms on haloperidol-induced catalepsy. Psychopharmacology (Berl) 1979 Mar 29;62(1):67–69. doi: 10.1007/BF00426037. [DOI] [PubMed] [Google Scholar]
- Benloucif S., Galloway M. P. Facilitation of dopamine release in vivo by serotonin agonists: studies with microdialysis. Eur J Pharmacol. 1991 Jul 23;200(1):1–8. doi: 10.1016/0014-2999(91)90658-d. [DOI] [PubMed] [Google Scholar]
- Benloucif S., Keegan M. J., Galloway M. P. Serotonin-facilitated dopamine release in vivo: pharmacological characterization. J Pharmacol Exp Ther. 1993 Apr;265(1):373–377. [PubMed] [Google Scholar]
- Bonhomme N., De Deurwaèrdere P., Le Moal M., Spampinato U. Evidence for 5-HT4 receptor subtype involvement in the enhancement of striatal dopamine release induced by serotonin: a microdialysis study in the halothane-anesthetized rat. Neuropharmacology. 1995 Mar;34(3):269–279. doi: 10.1016/0028-3908(94)00145-i. [DOI] [PubMed] [Google Scholar]
- Boyar W. C., Altar C. A. Modulation of in vivo dopamine release by D2 but not D1 receptor agonists and antagonists. J Neurochem. 1987 Mar;48(3):824–831. doi: 10.1111/j.1471-4159.1987.tb05591.x. [DOI] [PubMed] [Google Scholar]
- Calderon S. F., Sanberg P. R., Norman A. B. Quinolinic acid lesions of rat striatum abolish D1- and D2-dopamine receptor-mediated catalepsy. Brain Res. 1988 May 31;450(1-2):403–407. doi: 10.1016/0006-8993(88)91584-3. [DOI] [PubMed] [Google Scholar]
- Carter C. J., Pycock C. J. Possible importance of 5-hydroxytryptamine in neuroleptic-induced catalepsy in rats [proceedings]. Br J Pharmacol. 1977 Jun;60(2):267P–268P. [PMC free article] [PubMed] [Google Scholar]
- Casey D. E. Neuroleptic drug-induced extrapyramidal syndromes and tardive dyskinesia. Schizophr Res. 1991 Mar-Apr;4(2):109–120. doi: 10.1016/0920-9964(91)90029-q. [DOI] [PubMed] [Google Scholar]
- Chalmers D. T., Watson S. J. Comparative anatomical distribution of 5-HT1A receptor mRNA and 5-HT1A binding in rat brain--a combined in situ hybridisation/in vitro receptor autoradiographic study. Brain Res. 1991 Oct 4;561(1):51–60. doi: 10.1016/0006-8993(91)90748-k. [DOI] [PubMed] [Google Scholar]
- Chiodo L. A., Bannon M. J., Grace A. A., Roth R. H., Bunney B. S. Evidence for the absence of impulse-regulating somatodendritic and synthesis-modulating nerve terminal autoreceptors on subpopulations of mesocortical dopamine neurons. Neuroscience. 1984 May;12(1):1–16. doi: 10.1016/0306-4522(84)90133-7. [DOI] [PubMed] [Google Scholar]
- Commissiong J. W. Monoamine metabolites: their relationship and lack of relationship to monoaminergic neuronal activity. Biochem Pharmacol. 1985 Apr 15;34(8):1127–1131. doi: 10.1016/0006-2952(85)90484-8. [DOI] [PubMed] [Google Scholar]
- Cornfield L. J., Lambert G., Arvidsson L. E., Mellin C., Vallgårda J., Hacksell U., Nelson D. L. Intrinsic activity of enantiomers of 8-hydroxy-2-(di-n-propylamino)tetralin and its analogs at 5-hydroxytryptamine1A receptors that are negatively coupled to adenylate cyclase. Mol Pharmacol. 1991 Jun;39(6):780–787. [PubMed] [Google Scholar]
- Essig E. C., Kilpatrick I. C. Haloperidol-induced increases in rat amygdaloid dopamine metabolism: evidence for independence from postsynaptic feedback mechanisms. Neurosci Lett. 1991 Feb 25;123(2):261–264. doi: 10.1016/0304-3940(91)90946-q. [DOI] [PubMed] [Google Scholar]
- Essig E. C., Kilpatrick I. C. Influence of acute and chronic haloperidol treatment on dopamine metabolism in the rat caudate-putamen, prefrontal cortex and amygdala. Psychopharmacology (Berl) 1991;104(2):194–200. doi: 10.1007/BF02244178. [DOI] [PubMed] [Google Scholar]
- Fregnan G. B., Vidali M. Appearance of extrapyramidal symptoms: interaction between neuroleptics and other CNS active drugs. Pharmacology. 1982;25(2):102–110. doi: 10.1159/000137730. [DOI] [PubMed] [Google Scholar]
- Fuenmayor L. D., Vogt M. Production of catalepsy and depletion of brain monoamines by a butyrophenone derivative. Br J Pharmacol. 1979 Sep;67(1):115–122. [PMC free article] [PubMed] [Google Scholar]
- Garcia-Munoz M., Nicolaou M. N., Tulloch I. F., Wright A. K., Arguthnott G. W. Feedback loop or output pathway in striato-nigral fibres? Nature. 1977 Jan 27;265(5592):363–365. doi: 10.1038/265363a0. [DOI] [PubMed] [Google Scholar]
- Gołembiowska K., Wedzony K. Enhancement by ipsapirone of dopamine release in the rat striatum. Pol J Pharmacol. 1993 May-Jun;45(3):299–308. [PubMed] [Google Scholar]
- Hand T. H., Hu X. T., Wang R. Y. Differential effects of acute clozapine and haloperidol on the activity of ventral tegmental (A10) and nigrostriatal (A9) dopamine neurons. Brain Res. 1987 Jul 14;415(2):257–269. doi: 10.1016/0006-8993(87)90207-1. [DOI] [PubMed] [Google Scholar]
- Hartgraves S. L., Kelly P. H. Role of mesencephalic reticular formation in cholinergic-induced catalepsy and anticholinergic reversal of neuroleptic-induced catalepsy. Brain Res. 1984 Jul 30;307(1-2):47–54. doi: 10.1016/0006-8993(84)90458-x. [DOI] [PubMed] [Google Scholar]
- Hicks P. B. The effect of serotonergic agents on haloperidol-induced catalepsy. Life Sci. 1990;47(18):1609–1615. doi: 10.1016/0024-3205(90)90365-x. [DOI] [PubMed] [Google Scholar]
- Invernizzi R. W., Cervo L., Samanin R. 8-Hydroxy-2-(di-n-propylamino) tetralin, a selective serotonin1A receptor agonist, blocks haloperidol-induced catalepsy by an action on raphe nuclei medianus and dorsalis. Neuropharmacology. 1988 May;27(5):515–518. doi: 10.1016/0028-3908(88)90134-7. [DOI] [PubMed] [Google Scholar]
- Jiang L. H., Ashby C. R., Jr, Kasser R. J., Wang R. Y. The effect of intraventricular administration of the 5-HT3 receptor agonist 2-methylserotonin on the release of dopamine in the nucleus accumbens: an in vivo chronocoulometric study. Brain Res. 1990 Apr 9;513(1):156–160. doi: 10.1016/0006-8993(90)91103-n. [DOI] [PubMed] [Google Scholar]
- Johnson E. A., Tsai C. E., Shahan Y. H., Azzaro A. J. Serotonin 5-HT1A receptors mediate inhibition of tyrosine hydroxylation in rat striatum. J Pharmacol Exp Ther. 1993 Jul;266(1):133–141. [PubMed] [Google Scholar]
- Kilpatrick I. C., Jones M. W., Phillipson O. T. A semiautomated analysis method for catecholamines, indoleamines, and some prominent metabolites in microdissected regions of the nervous system: an isocratic HPLC technique employing coulometric detection and minimal sample preparation. J Neurochem. 1986 Jun;46(6):1865–1876. doi: 10.1111/j.1471-4159.1986.tb08506.x. [DOI] [PubMed] [Google Scholar]
- Klemm W. R. Drug effects on active immobility responses: what they tell us about neurotransmitter systems and motor functions. Prog Neurobiol. 1989;32(5):403–422. doi: 10.1016/0301-0082(89)90030-0. [DOI] [PubMed] [Google Scholar]
- Klockgether T., Schwarz M., Turski L., Sontag K. H. Catalepsy after microinjection of haloperidol into the rat medial prefrontal cortex. Exp Brain Res. 1988;70(2):445–447. doi: 10.1007/BF00248371. [DOI] [PubMed] [Google Scholar]
- Kostowski W., Gumulka W., Cxlonkowski A. Reduced cataleptogenic effects of some neuroleptics in rats with lesioned midbrain raphe and treated with p-chlorophenylalanine. Brain Res. 1972 Dec 24;48:443–446. doi: 10.1016/0006-8993(72)90208-9. [DOI] [PubMed] [Google Scholar]
- Marcinkiewicz M., Vergé D., Gozlan H., Pichat L., Hamon M. Autoradiographic evidence for the heterogeneity of 5-HT1 sites in the rat brain. Brain Res. 1984 Jan 16;291(1):159–163. doi: 10.1016/0006-8993(84)90664-4. [DOI] [PubMed] [Google Scholar]
- Neal-Beliveau B. S., Joyce J. N., Lucki I. Serotonergic involvement in haloperidol-induced catalepsy. J Pharmacol Exp Ther. 1993 Apr;265(1):207–217. [PubMed] [Google Scholar]
- Ogren S. O., Hall H., Köhler C., Magnusson O., Lindbom L. O., Angeby K., Florvall L. Remoxipride, a new potential antipsychotic compound with selective antidopaminergic actions in the rat brain. Eur J Pharmacol. 1984 Jul 20;102(3-4):459–474. doi: 10.1016/0014-2999(84)90567-3. [DOI] [PubMed] [Google Scholar]
- Ossowska K., Karcz M., Wardas J., Wolfarth S. Striatal and nucleus accumbens D1/D2 dopamine receptors in neuroleptic catalepsy. Eur J Pharmacol. 1990 Jul 3;182(2):327–334. doi: 10.1016/0014-2999(90)90291-d. [DOI] [PubMed] [Google Scholar]
- Parsons L. H., Justice J. B., Jr Perfusate serotonin increases extracellular dopamine in the nucleus accumbens as measured by in vivo microdialysis. Brain Res. 1993 Mar 26;606(2):195–199. doi: 10.1016/0006-8993(93)90984-u. [DOI] [PubMed] [Google Scholar]
- Perry K. W., Fuller R. W. Determination of brain concentrations of 8-hydroxy-2-(di-n-propylamino)tetralin by liquid chromatography with electrochemical detection. Biochem Pharmacol. 1989 Oct 1;38(19):3169–3173. doi: 10.1016/0006-2952(89)90609-6. [DOI] [PubMed] [Google Scholar]
- Radja F., Descarries L., Dewar K. M., Reader T. A. Serotonin 5-HT1 and 5-HT2 receptors in adult rat brain after neonatal destruction of nigrostriatal dopamine neurons: a quantitative autoradiographic study. Brain Res. 1993 Mar 26;606(2):273–285. doi: 10.1016/0006-8993(93)90995-y. [DOI] [PubMed] [Google Scholar]
- Sanberg P. R. Haloperidol-induced catalepsy is mediated by postsynaptic dopamine receptors. Nature. 1980 Apr 3;284(5755):472–473. doi: 10.1038/284472a0. [DOI] [PubMed] [Google Scholar]
- Sarnek J., Baran L. The effect of 5-hydroxytrytamine synthesis inhibitors on neuroleptic-induced catalepsy in rats. Arch Immunol Ther Exp (Warsz) 1975;23(4):511–516. [PubMed] [Google Scholar]
- Sharp T., Bramwell S. R., Grahame-Smith D. G. 5-HT1 agonists reduce 5-hydroxytryptamine release in rat hippocampus in vivo as determined by brain microdialysis. Br J Pharmacol. 1989 Feb;96(2):283–290. doi: 10.1111/j.1476-5381.1989.tb11815.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith C. F., Cutts S. Dopamine agonist activity of 8-OH-DPAT. Arch Int Pharmacodyn Ther. 1990 Jul-Aug;306:106–113. [PubMed] [Google Scholar]
- Talmaciu R. K., Hoffmann I. S., Cubeddu L. X. Dopamine autoreceptors modulate dopamine release from the prefrontal cortex. J Neurochem. 1986 Sep;47(3):865–870. doi: 10.1111/j.1471-4159.1986.tb00691.x. [DOI] [PubMed] [Google Scholar]
- Tricklebank M. D., Forler C., Fozard J. R. The involvement of subtypes of the 5-HT1 receptor and of catecholaminergic systems in the behavioural response to 8-hydroxy-2-(di-n-propylamino)tetralin in the rat. Eur J Pharmacol. 1984 Nov 13;106(2):271–282. doi: 10.1016/0014-2999(84)90714-3. [DOI] [PubMed] [Google Scholar]
- Wadenberg M. L., Ahlenius S. Antipsychotic-like profile of combined treatment with raclopride and 8-OH-DPAT in the rat: enhancement of antipsychotic-like effects without catalepsy. J Neural Transm Gen Sect. 1991;83(1-2):43–53. doi: 10.1007/BF01244451. [DOI] [PubMed] [Google Scholar]
- Wadenberg M. L., Cortizo L., Ahlenius S. Evidence for specific interactions between 5-HT1A and dopamine D2 receptor mechanisms in the mediation of extrapyramidal motor functions in the rat. Pharmacol Biochem Behav. 1994 Mar;47(3):509–513. doi: 10.1016/0091-3057(94)90152-x. [DOI] [PubMed] [Google Scholar]
- Wadenberg M. L., Hillegaart V., Berge O. G. Supraspinal mediation of dopamine-serotonin interactions in extrapyramidal motor functions in the rat. Neuroreport. 1993 Jan;4(1):59–61. doi: 10.1097/00001756-199301000-00015. [DOI] [PubMed] [Google Scholar]
- Westerink B. H., de Vries J. B. On the mechanism of neuroleptic induced increase in striatal dopamine release: brain dialysis provides direct evidence for mediation by autoreceptors localized on nerve terminals. Neurosci Lett. 1989 Apr 24;99(1-2):197–202. doi: 10.1016/0304-3940(89)90289-9. [DOI] [PubMed] [Google Scholar]
- Wolf M. E., Roth R. H. Dopamine neurons projecting to the medial prefrontal cortex possess release-modulating autoreceptors. Neuropharmacology. 1987 Aug;26(8):1053–1059. doi: 10.1016/0028-3908(87)90248-6. [DOI] [PubMed] [Google Scholar]
- Wuerthele S. M., Moore K. E. Effect of systemic and intrastriatal injections of haloperidol on striatal dopamine and DOPAC concentrations in rats pretreated by section of nigrostriatal fibres. J Pharm Pharmacol. 1980 Jul;32(7):507–510. doi: 10.1111/j.2042-7158.1980.tb12981.x. [DOI] [PubMed] [Google Scholar]
- Wuerthele S. M., Moore K. E. Effects of dopaminergic antagonists on striatal DOPAC concentrations and alpha-methyl-p-tyrosine-induced decline of dopamine following intrastriatal injections of kainic acid. J Pharm Pharmacol. 1979 Mar;31(3):180–182. doi: 10.1111/j.2042-7158.1979.tb13467.x. [DOI] [PubMed] [Google Scholar]
- Zetterström T., Sharp T., Ungerstedt U. Effect of neuroleptic drugs on striatal dopamine release and metabolism in the awake rat studied by intracerebral dialysis. Eur J Pharmacol. 1984 Oct 30;106(1):27–37. doi: 10.1016/0014-2999(84)90674-5. [DOI] [PubMed] [Google Scholar]




