Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 May;118(2):243–248. doi: 10.1111/j.1476-5381.1996.tb15394.x

Cerebrovascular responsiveness to NG-nitro-L-arginine methyl ester in spontaneously diabetic rats.

I P Fouyas 1, P A Kelly 1, I M Ritchie 1, I R Whittle 1
PMCID: PMC1909641  PMID: 8735622

Abstract

1. There is evidence that endothelial dysfunction is associated with diabetes mellitus. The purpose of the present study was to assess local cerebral blood flow (LCBF) and cerebrovascular responsiveness to the NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME) in spontaneously diabetic insulin-dependent BioBred (BB) rats. 2. Diabetic rats, and non-diabetic controls, were treated with L-NAME (30 mg kg-1, i.v.) or saline, 20 min prior to the measurement of LCBF by the fully quantitative [14C]-iodoantipyrine autoradiographic technique. 3. There were no significant differences in physiological parameters (blood pH, PCO2, and PO2, rectal temperature, arterial blood pressure, or plasma glucose) between any of the groups of rats, and no difference in either the extent or the temporal characteristics of the hypertensive response to L-NAME between diabetic and non-diabetic rats. 4. In diabetic rats, a global reduction in basal LCBF was observed, although significant reductions (between -20 and -30%) were found in only 5 (mainly subcortical) out of the 13 brain regions measured. Following L-NAME injection, significant reductions in LCBF (between -20 and -40%) were found in the non-diabetic animals. In diabetic animals treated with L-NAME, a significant reduction in LCBF was measured only in the hypothalamus (-33%). 5. The cerebrovascular response to acute L-NAME is attenuated in spontaneously diabetic insulin-dependent BB rats. This would be consistent with the endothelial dysfunction in cerebral vessels, known to be associated with diabetes mellitus and it is possible that a loss of NO-induced dilator tone, amongst other factors, may underlie the observed reductions of basal LCBF in these animals.

Full text

PDF
243

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aronson S. M. Intracranial vascular lesions in patients with diabetes mellitus. J Neuropathol Exp Neurol. 1973 Apr;32(2):183–196. doi: 10.1097/00005072-197304000-00001. [DOI] [PubMed] [Google Scholar]
  2. Barnes A. J., Locke P., Scudder P. R., Dormandy T. L., Dormandy J. A., Slack J. Is hyperviscosity a treatable component of diabetic microcirculatory disease? Lancet. 1977 Oct 15;2(8042):789–791. doi: 10.1016/s0140-6736(77)90724-3. [DOI] [PubMed] [Google Scholar]
  3. Brown M. M., Marshall J. Regulation of cerebral blood flow in response to changes in blood viscosity. Lancet. 1985 Mar 16;1(8429):604–609. doi: 10.1016/s0140-6736(85)92145-2. [DOI] [PubMed] [Google Scholar]
  4. Bucala R., Cerami A. Advanced glycosylation: chemistry, biology, and implications for diabetes and aging. Adv Pharmacol. 1992;23:1–34. doi: 10.1016/s1054-3589(08)60961-8. [DOI] [PubMed] [Google Scholar]
  5. Bucala R., Tracey K. J., Cerami A. Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes. J Clin Invest. 1991 Feb;87(2):432–438. doi: 10.1172/JCI115014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cameron N. E., Cotter M. A. Neurovascular dysfunction in diabetic rats. Potential contribution of autoxidation and free radicals examined using transition metal chelating agents. J Clin Invest. 1995 Aug;96(2):1159–1163. doi: 10.1172/JCI118104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Colwell J. A. Pathophysiology of vascular disease in diabetes: effects of gliclazide. Am J Med. 1991 Jun 24;90(6A):50S–54S. doi: 10.1016/0002-9343(91)90418-w. [DOI] [PubMed] [Google Scholar]
  8. Corbett J. A., Tilton R. G., Chang K., Hasan K. S., Ido Y., Wang J. L., Sweetland M. A., Lancaster J. R., Jr, Williamson J. R., McDaniel M. L. Aminoguanidine, a novel inhibitor of nitric oxide formation, prevents diabetic vascular dysfunction. Diabetes. 1992 Apr;41(4):552–556. doi: 10.2337/diab.41.4.552. [DOI] [PubMed] [Google Scholar]
  9. Duckrow R. B., Beard D. C., Brennan R. W. Regional cerebral blood flow decreases during chronic and acute hyperglycemia. Stroke. 1987 Jan-Feb;18(1):52–58. doi: 10.1161/01.str.18.1.52. [DOI] [PubMed] [Google Scholar]
  10. Eizirik D. L., Pipeleers D. G., Ling Z., Welsh N., Hellerström C., Andersson A. Major species differences between humans and rodents in the susceptibility to pancreatic beta-cell injury. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9253–9256. doi: 10.1073/pnas.91.20.9253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Faraci F. M., Brian J. E., Jr Nitric oxide and the cerebral circulation. Stroke. 1994 Mar;25(3):692–703. doi: 10.1161/01.str.25.3.692. [DOI] [PubMed] [Google Scholar]
  12. GRUNNET M. L. Cerebrovascular disease: diabetes and cerebral atherosclerosis. Neurology. 1963 Jun;13:486–491. doi: 10.1212/wnl.13.6.486. [DOI] [PubMed] [Google Scholar]
  13. Griffith D. N., Saimbi S., Lewis C., Tolfree S., Betteridge D. J. Abnormal cerebrovascular carbon dioxide reactivity in people with diabetes. Diabet Med. 1987 May-Jun;4(3):217–220. doi: 10.1111/j.1464-5491.1987.tb00865.x. [DOI] [PubMed] [Google Scholar]
  14. Grill V., Gutniak M., Björkman O., Lindqvist M., Stone-Elander S., Seitz R. J., Blomqvist G., Reichard P., Widén L. Cerebral blood flow and substrate utilization in insulin-treated diabetic subjects. Am J Physiol. 1990 May;258(5 Pt 1):E813–E820. doi: 10.1152/ajpendo.1990.258.5.E813. [DOI] [PubMed] [Google Scholar]
  15. Harik S. I., LaManna J. C. Vascular perfusion and blood-brain glucose transport in acute and chronic hyperglycemia. J Neurochem. 1988 Dec;51(6):1924–1929. doi: 10.1111/j.1471-4159.1988.tb01179.x. [DOI] [PubMed] [Google Scholar]
  16. Jakobsen J., Nedergaard M., Aarslew-Jensen M., Diemer N. H. Regional brain glucose metabolism and blood flow in streptozocin-induced diabetic rats. Diabetes. 1990 Apr;39(4):437–440. doi: 10.2337/diab.39.4.437. [DOI] [PubMed] [Google Scholar]
  17. Jørgensen H., Nakayama H., Raaschou H. O., Olsen T. S. Stroke in patients with diabetes. The Copenhagen Stroke Study. Stroke. 1994 Oct;25(10):1977–1984. doi: 10.1161/01.str.25.10.1977. [DOI] [PubMed] [Google Scholar]
  18. Kannel W. B., McGee D. L. Diabetes and cardiovascular risk factors: the Framingham study. Circulation. 1979 Jan;59(1):8–13. doi: 10.1161/01.cir.59.1.8. [DOI] [PubMed] [Google Scholar]
  19. Kastrup J., Rørsgaard S., Parving H. H., Lassen N. A. Impaired autoregulation of cerebral blood flow in long-term type I (insulin-dependent) diabetic patients with nephropathy and retinopathy. Clin Physiol. 1986 Dec;6(6):549–559. doi: 10.1111/j.1475-097x.1986.tb00788.x. [DOI] [PubMed] [Google Scholar]
  20. Kelly P. A., Thomas C. L., Ritchie I. M., Arbuthnott G. W. Cerebrovascular autoregulation in response to hypertension induced by NG-nitro-L-arginine methyl ester. Neuroscience. 1994 Mar;59(1):13–20. doi: 10.1016/0306-4522(94)90094-9. [DOI] [PubMed] [Google Scholar]
  21. Kety S. S., Polis B. D., Nadler C. S., Schmidt C. F. THE BLOOD FLOW AND OXYGEN CONSUMPTION OF THE HUMAN BRAIN IN DIABETIC ACIDOSIS AND COMA. J Clin Invest. 1948 Jul;27(4):500–510. doi: 10.1172/JCI101997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kiff R. J., Gardiner S. M., Compton A. M., Bennett T. Selective impairment of hindquarters vasodilator responses to bradykinin in conscious Wistar rats with streptozotocin-induced diabetes mellitus. Br J Pharmacol. 1991 Jun;103(2):1357–1362. doi: 10.1111/j.1476-5381.1991.tb09793.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kiff R. J., Gardiner S. M., Compton A. M., Bennett T. The effects of endothelin-1 and NG-nitro-L-arginine methyl ester on regional haemodynamics in conscious rats with streptozotocin-induced diabetes mellitus. Br J Pharmacol. 1991 Jun;103(2):1321–1326. doi: 10.1111/j.1476-5381.1991.tb09787.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kihara M., Low P. A. Impaired vasoreactivity to nitric oxide in experimental diabetic neuropathy. Exp Neurol. 1995 Apr;132(2):180–185. doi: 10.1016/0014-4886(95)90023-3. [DOI] [PubMed] [Google Scholar]
  25. Kimura M., Dietrich H. H., Dacey R. G., Jr Nitric oxide regulates cerebral arteriolar tone in rats. Stroke. 1994 Nov;25(11):2227–2234. doi: 10.1161/01.str.25.11.2227. [DOI] [PubMed] [Google Scholar]
  26. Lindsay R. M., Smith W., Rossiter S. P., McIntyre M. A., Williams B. C., Baird J. D. N omega-nitro-L-arginine methyl ester reduces the incidence of IDDM in BB/E rats. Diabetes. 1995 Mar;44(3):365–368. doi: 10.2337/diab.44.3.365. [DOI] [PubMed] [Google Scholar]
  27. MacLeod K. M., Hepburn D. A., Deary I. J., Goodwin G. M., Dougall N., Ebmeier K. P., Frier B. M. Regional cerebral blood flow in IDDM patients: effects of diabetes and of recurrent severe hypoglycaemia. Diabetologia. 1994 Mar;37(3):257–263. doi: 10.1007/BF00398052. [DOI] [PubMed] [Google Scholar]
  28. Macrae I. M., Dawson D. A., Norrie J. D., McCulloch J. Inhibition of nitric oxide synthesis: effects on cerebral blood flow and glucose utilisation in the rat. J Cereb Blood Flow Metab. 1993 Nov;13(6):985–992. doi: 10.1038/jcbfm.1993.123. [DOI] [PubMed] [Google Scholar]
  29. Mans A. M., DeJoseph M. R., Davis D. W., Hawkins R. A. Regional amino acid transport into brain during diabetes: effect of plasma amino acids. Am J Physiol. 1987 Nov;253(5 Pt 1):E575–E583. doi: 10.1152/ajpendo.1987.253.5.E575. [DOI] [PubMed] [Google Scholar]
  30. Marliss E. B., Nakhooda A. F., Poussier P., Sima A. A. The diabetic syndrome of the 'BB' Wistar rat: possible relevance to type 1 (insulin-dependent) diabetes in man. Diabetologia. 1982 Apr;22(4):225–232. doi: 10.1007/BF00281296. [DOI] [PubMed] [Google Scholar]
  31. Mayhan W. G. Effect of diabetes mellitus on responses of the rat basilar artery to activation of beta-adrenergic receptors. Brain Res. 1994 Oct 3;659(1-2):208–212. doi: 10.1016/0006-8993(94)90880-x. [DOI] [PubMed] [Google Scholar]
  32. Mayhan W. G. Impairment of endothelium-dependent dilatation of cerebral arterioles during diabetes mellitus. Am J Physiol. 1989 Mar;256(3 Pt 2):H621–H625. doi: 10.1152/ajpheart.1989.256.3.H621. [DOI] [PubMed] [Google Scholar]
  33. Mayhan W. G., Simmons L. K., Sharpe G. M. Mechanism of impaired responses of cerebral arterioles during diabetes mellitus. Am J Physiol. 1991 Feb;260(2 Pt 2):H319–H326. doi: 10.1152/ajpheart.1991.260.2.H319. [DOI] [PubMed] [Google Scholar]
  34. McCall A. L. The impact of diabetes on the CNS. Diabetes. 1992 May;41(5):557–570. doi: 10.2337/diab.41.5.557. [DOI] [PubMed] [Google Scholar]
  35. McMillan D. E., Utterback N. G., La Puma J. Reduced erythrocyte deformability in diabetes. Diabetes. 1978 Sep;27(9):895–901. doi: 10.2337/diab.27.9.895. [DOI] [PubMed] [Google Scholar]
  36. Meraji S., Jayakody L., Senaratne M. P., Thomson A. B., Kappagoda T. Endothelium-dependent relaxation in aorta of BB rat. Diabetes. 1987 Aug;36(8):978–981. doi: 10.2337/diab.36.8.978. [DOI] [PubMed] [Google Scholar]
  37. Mooradian A. D. Diabetic complications of the central nervous system. Endocr Rev. 1988 Aug;9(3):346–356. doi: 10.1210/edrv-9-3-346. [DOI] [PubMed] [Google Scholar]
  38. Nedergaard M., Diemer N. H. Focal ischemia of the rat brain, with special reference to the influence of plasma glucose concentration. Acta Neuropathol. 1987;73(2):131–137. doi: 10.1007/BF00693778. [DOI] [PubMed] [Google Scholar]
  39. Pelligrino D. A., Albrecht R. F. Chronic hyperglycemic diabetes in the rat is associated with a selective impairment of cerebral vasodilatory responses. J Cereb Blood Flow Metab. 1991 Jul;11(4):667–677. doi: 10.1038/jcbfm.1991.119. [DOI] [PubMed] [Google Scholar]
  40. Pelligrino D. A., Miletich D. J., Albrecht R. F. Diminished muscarinic receptor-mediated cerebral blood flow response in streptozotocin-treated rats. Am J Physiol. 1992 Apr;262(4 Pt 1):E447–E454. doi: 10.1152/ajpendo.1992.262.4.E447. [DOI] [PubMed] [Google Scholar]
  41. Poston L., Taylor P. D. Glaxo/MRS Young Investigator Prize. Endothelium-mediated vascular function in insulin-dependent diabetes mellitus. Clin Sci (Lond) 1995 Mar;88(3):245–255. doi: 10.1042/cs0880245. [DOI] [PubMed] [Google Scholar]
  42. Reichard P., Nilsson B. Y., Rosenqvist U. The effect of long-term intensified insulin treatment on the development of microvascular complications of diabetes mellitus. N Engl J Med. 1993 Jul 29;329(5):304–309. doi: 10.1056/NEJM199307293290502. [DOI] [PubMed] [Google Scholar]
  43. Richard V., Hogie M., Clozel M., Löffler B. M., Thuillez C. In vivo evidence of an endothelin-induced vasopressor tone after inhibition of nitric oxide synthesis in rats. Circulation. 1995 Feb 1;91(3):771–775. doi: 10.1161/01.cir.91.3.771. [DOI] [PubMed] [Google Scholar]
  44. Rosenblum W. I., Levasseur J. E. Microvascular responses of intermediate-size arterioles on the cerebral surface of diabetic mice. Microvasc Res. 1984 Nov;28(3):368–372. doi: 10.1016/0026-2862(84)90007-4. [DOI] [PubMed] [Google Scholar]
  45. Sakurada O., Kennedy C., Jehle J., Brown J. D., Carbin G. L., Sokoloff L. Measurement of local cerebral blood flow with iodo [14C] antipyrine. Am J Physiol. 1978 Jan;234(1):H59–H66. doi: 10.1152/ajpheart.1978.234.1.H59. [DOI] [PubMed] [Google Scholar]
  46. Smith M. L., von Hanwehr R., Siesjö B. K. Changes in extra- and intracellular pH in the brain during and following ischemia in hyperglycemic and in moderately hypoglycemic rats. J Cereb Blood Flow Metab. 1986 Oct;6(5):574–583. doi: 10.1038/jcbfm.1986.104. [DOI] [PubMed] [Google Scholar]
  47. Sutherland G. R., Peeling J., Sutherland E., Tyson R., Dai F., Kozlowski P., Saunders J. K. Forebrain ischemia in diabetic and nondiabetic BB rats studied with 31P magnetic resonance spectroscopy. Diabetes. 1992 Oct;41(10):1328–1334. doi: 10.2337/diab.41.10.1328. [DOI] [PubMed] [Google Scholar]
  48. Wascher T. C., Toplak H., Krejs G. J., Simecek S., Kukovetz W. R., Graier W. F. Intracellular mechanisms involved in D-glucose-mediated amplification of agonist-induced Ca2+ response and EDRF formation in vascular endothelial cells. Diabetes. 1994 Aug;43(8):984–991. doi: 10.2337/diab.43.8.984. [DOI] [PubMed] [Google Scholar]
  49. Waschke K. F., Krieter H., Hagen G., Albrecht D. M., Van Ackern K., Kuschinsky W. Lack of dependence of cerebral blood flow on blood viscosity after blood exchange with a Newtonian O2 carrier. J Cereb Blood Flow Metab. 1994 Sep;14(5):871–876. doi: 10.1038/jcbfm.1994.109. [DOI] [PubMed] [Google Scholar]
  50. Wautier J. L., Paton R. C., Wautier M. P., Pintigny D., Abadie E., Passa P., Caen J. P. Increased adhesion of erythrocytes to endothelial cells in diabetes mellitus and its relation to vascular complications. N Engl J Med. 1981 Jul 30;305(5):237–242. doi: 10.1056/NEJM198107303050501. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES