Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Jul;118(6):1469–1476. doi: 10.1111/j.1476-5381.1996.tb15562.x

B1 bradykinin receptors and sensory neurones.

C L Davis 1, S Naeem 1, S B Phagoo 1, E A Campbell 1, L Urban 1, G M Burgess 1
PMCID: PMC1909652  PMID: 8832074

Abstract

1. The location of the B1 bradykinin receptors involved in inflammatory hyperalgesia was investigated. 2. No specific binding of the B1 bradykinin receptor ligand [3H]-des-Arg10-kallidin was detected in primary cultures of rat dorsal root ganglion neurones, even after treatment with interleukin-1 beta (100 iu ml-1). 3. In dorsal root ganglion neurones, activation of B2 bradykinin receptors stimulated polyphosphoinositidase C. In contrast, B1 bradykinin receptor agonists (des-Arg9-bradykinin up to 10 microM and des-Arg10-kallidin up to 1 microM) failed to activate polyphosphoinositidase C, even in neurones that had been treated with interleukin-1 beta (100 iu ml-1), prostaglandin E2 (1 microM) or prostaglandin I2 (1 microM). 4. Dorsal root ganglion neurones removed from rats (both neonatal and 14 days old) that had been pretreated with inflammatory mediators (Freund's complete adjuvant, or carrageenan) failed to respond to B1 bradykinin receptor selective agonists (des-Arg9-bradykinin up to 10 microM and des-Arg10-kallidin up to 1 microM). 5. Bradykinin (25 nM to 300 nM) evoked ventral root responses when applied to peripheral receptive fields or central terminals of primary afferents in the neonatal rat spinal cord and tail preparation. In contrast, des-Arg9-bradykinin (50 nM to 500 nM) failed to evoke ventral root depolarizations in either control rats or in animals that developed inflammation following ultraviolet irradiation of the tail skin. 6. The results of the present study imply that the B1 bradykinin receptors that contribute to hypersensitivity in models of persistent inflammatory hyperalgesia are located on cells other than sensory neurones where they may be responsible for releasing mediators that sensitize or activate the nociceptors.

Full text

PDF
1469

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angel J., Audubert F., Bismuth G., Fournier C. IL-1 beta amplifies bradykinin-induced prostaglandin E2 production via a phospholipase D-linked mechanism. J Immunol. 1994 May 15;152(10):5032–5040. [PubMed] [Google Scholar]
  2. Babbedge R., Dray A., Urban L. Bradykinin depolarises the rat isolated superior cervical ganglion via B2 receptor activation. Neurosci Lett. 1995 Jul 7;193(3):161–164. doi: 10.1016/0304-3940(95)11690-x. [DOI] [PubMed] [Google Scholar]
  3. Bascands J. L., Pecher C., Rouaud S., Emond C., Tack J. L., Bastie M. J., Burch R., Regoli D., Girolami J. P. Evidence for existence of two distinct bradykinin receptors on rat mesangial cells. Am J Physiol. 1993 Mar;264(3 Pt 2):F548–F556. doi: 10.1152/ajprenal.1993.264.3.F548. [DOI] [PubMed] [Google Scholar]
  4. Bathon J. M., Manning D. C., Goldman D. W., Towns M. C., Proud D. Characterization of kinin receptors on human synovial cells and upregulation of receptor number by interleukin-1. J Pharmacol Exp Ther. 1992 Jan;260(1):384–392. [PubMed] [Google Scholar]
  5. Berridge M. J. Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol. Biochem J. 1983 Jun 15;212(3):849–858. doi: 10.1042/bj2120849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burgess G. M., Mullaney I., McNeill M., Dunn P. M., Rang H. P. Second messengers involved in the mechanism of action of bradykinin in sensory neurons in culture. J Neurosci. 1989 Sep;9(9):3314–3325. doi: 10.1523/JNEUROSCI.09-09-03314.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cahill M., Fishman J. B., Polgar P. Effect of des arginine9-bradykinin and other bradykinin fragments on the synthesis of prostacyclin and the binding of bradykinin by vascular cells in culture. Agents Actions. 1988 Jul;24(3-4):224–231. doi: 10.1007/BF02028275. [DOI] [PubMed] [Google Scholar]
  8. Corrado A. P., Ballejo G. Is guanylate cyclase activation through the release of nitric oxide or a related compound involved in bradykinin-induced perivascular primary afferent excitation? Agents Actions Suppl. 1992;36:238–250. [PubMed] [Google Scholar]
  9. Davis A. J., Kelly D., Perkins M. N. The induction of des-Arg9-bradykinin-mediated hyperalgesia in the rat by inflammatory stimuli. Braz J Med Biol Res. 1994 Aug;27(8):1793–1802. [PubMed] [Google Scholar]
  10. Davis A. J., Perkins M. N. The involvement of bradykinin B1 and B2 receptor mechanisms in cytokine-induced mechanical hyperalgesia in the rat. Br J Pharmacol. 1994 Sep;113(1):63–68. doi: 10.1111/j.1476-5381.1994.tb16174.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Deblois D., Bouthillier J., Marceau F. Effect of glucocorticoids, monokines and growth factors on the spontaneously developing responses of the rabbit isolated aorta to des-Arg9-bradykinin. Br J Pharmacol. 1988 Apr;93(4):969–977. doi: 10.1111/j.1476-5381.1988.tb11487.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dray A., Bettaney J., Forster P. Actions of capsaicin on peripheral nociceptors of the neonatal rat spinal cord-tail in vitro: dependence of extracellular ions and independence of second messengers. Br J Pharmacol. 1990 Nov;101(3):727–733. doi: 10.1111/j.1476-5381.1990.tb14148.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dray A., Bettaney J., Forster P., Perkins M. N. Activation of a bradykinin receptor in peripheral nerve and spinal cord in the neonatal rat in vitro. Br J Pharmacol. 1988 Dec;95(4):1008–1010. doi: 10.1111/j.1476-5381.1988.tb11732.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dray A., Patel I. A., Perkins M. N., Rueff A. Bradykinin-induced activation of nociceptors: receptor and mechanistic studies on the neonatal rat spinal cord-tail preparation in vitro. Br J Pharmacol. 1992 Dec;107(4):1129–1134. doi: 10.1111/j.1476-5381.1992.tb13418.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dray A., Perkins M. Bradykinin and inflammatory pain. Trends Neurosci. 1993 Mar;16(3):99–104. doi: 10.1016/0166-2236(93)90133-7. [DOI] [PubMed] [Google Scholar]
  16. Farmer S. G., McMillan B. A., Meeker S. N., Burch R. M. Induction of vascular smooth muscle bradykinin B1 receptors in vivo during antigen arthritis. Agents Actions. 1991 Sep;34(1-2):191–193. doi: 10.1007/BF01993275. [DOI] [PubMed] [Google Scholar]
  17. Ferreira S. H., Nakamura M., de Abreu Castro M. S. The hyperalgesic effects of prostacyclin and prostaglandin E2. Prostaglandins. 1978 Jul;16(1):31–37. doi: 10.1016/0090-6980(78)90199-5. [DOI] [PubMed] [Google Scholar]
  18. Fitzgerald M., Gibson S. The postnatal physiological and neurochemical development of peripheral sensory C fibres. Neuroscience. 1984 Nov;13(3):933–944. doi: 10.1016/0306-4522(84)90107-6. [DOI] [PubMed] [Google Scholar]
  19. Galizzi J. P., Bodinier M. C., Chapelain B., Ly S. M., Coussy L., Giraud S., Neliat G., Jean T. Up-regulation of [3H]-des-Arg10-kallidin binding to the bradykinin B1 receptor by interleukin-1 beta in isolated smooth muscle cells: correlation with B1 agonist-induced PGI2 production. Br J Pharmacol. 1994 Oct;113(2):389–394. doi: 10.1111/j.1476-5381.1994.tb17001.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gonzales R., Coderre T. J., Sherbourne C. D., Levine J. D. Postnatal development of neurogenic inflammation in the rat. Neurosci Lett. 1991 Jun 10;127(1):25–27. doi: 10.1016/0304-3940(91)90885-w. [DOI] [PubMed] [Google Scholar]
  21. Habib A., Créminon C., Frobert Y., Grassi J., Pradelles P., Maclouf J. Demonstration of an inducible cyclooxygenase in human endothelial cells using antibodies raised against the carboxyl-terminal region of the cyclooxygenase-2. J Biol Chem. 1993 Nov 5;268(31):23448–23454. [PubMed] [Google Scholar]
  22. Haley J. E., Dickenson A. H., Schachter M. Electrophysiological evidence for a role of bradykinin in chemical nociception in the rat. Neurosci Lett. 1989 Feb 13;97(1-2):198–202. doi: 10.1016/0304-3940(89)90163-8. [DOI] [PubMed] [Google Scholar]
  23. Haley J. E., Dickenson A. H., Schachter M. Electrophysiological evidence for a role of nitric oxide in prolonged chemical nociception in the rat. Neuropharmacology. 1992 Mar;31(3):251–258. doi: 10.1016/0028-3908(92)90175-o. [DOI] [PubMed] [Google Scholar]
  24. Hess J. F., Borkowski J. A., Young G. S., Strader C. D., Ransom R. W. Cloning and pharmacological characterization of a human bradykinin (BK-2) receptor. Biochem Biophys Res Commun. 1992 Apr 15;184(1):260–268. doi: 10.1016/0006-291x(92)91187-u. [DOI] [PubMed] [Google Scholar]
  25. Hock F. J., Wirth K., Albus U., Linz W., Gerhards H. J., Wiemer G., Henke S., Breipohl G., König W., Knolle J. Hoe 140 a new potent and long acting bradykinin-antagonist: in vitro studies. Br J Pharmacol. 1991 Mar;102(3):769–773. doi: 10.1111/j.1476-5381.1991.tb12248.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Holthusen H., Arndt J. O. Nitric oxide evokes pain in humans on intracutaneous injection. Neurosci Lett. 1994 Jan 3;165(1-2):71–74. doi: 10.1016/0304-3940(94)90712-9. [DOI] [PubMed] [Google Scholar]
  27. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  28. Lee A., Coderre T. J., Basbaum A. I., Levine J. D. Sympathetic neuron factors involved in bradykinin-induced plasma extravasation in the rat. Brain Res. 1991 Aug 23;557(1-2):146–148. doi: 10.1016/0006-8993(91)90127-h. [DOI] [PubMed] [Google Scholar]
  29. Lerner U. H., Modéer T. Bradykinin B1 and B2 receptor agonists synergistically potentiate interleukin-1-induced prostaglandin biosynthesis in human gingival fibroblasts. Inflammation. 1991 Dec;15(6):427–436. doi: 10.1007/BF00923340. [DOI] [PubMed] [Google Scholar]
  30. Levesque L., Drapeau G., Grose J. H., Rioux F., Marceau F. Vascular mode of action of kinin B1 receptors and development of a cellular model for the investigation of these receptors. Br J Pharmacol. 1993 Aug;109(4):1254–1262. doi: 10.1111/j.1476-5381.1993.tb13757.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Levine J. D., Taiwo Y. O., Collins S. D., Tam J. K. Noradrenaline hyperalgesia is mediated through interaction with sympathetic postganglionic neurone terminals rather than activation of primary afferent nociceptors. Nature. 1986 Sep 11;323(6084):158–160. doi: 10.1038/323158a0. [DOI] [PubMed] [Google Scholar]
  32. Marceau F., Barabé J., St-Pierre S., Regoli D. Kinin receptors in experimental inflammation. Can J Physiol Pharmacol. 1980 May;58(5):536–542. doi: 10.1139/y80-088. [DOI] [PubMed] [Google Scholar]
  33. Martin H. A., Basbaum A. I., Kwiat G. C., Goetzl E. J., Levine J. D. Leukotriene and prostaglandin sensitization of cutaneous high-threshold C- and A-delta mechanonociceptors in the hairy skin of rat hindlimbs. Neuroscience. 1987 Aug;22(2):651–659. doi: 10.1016/0306-4522(87)90360-5. [DOI] [PubMed] [Google Scholar]
  34. Menke J. G., Borkowski J. A., Bierilo K. K., MacNeil T., Derrick A. W., Schneck K. A., Ransom R. W., Strader C. D., Linemeyer D. L., Hess J. F. Expression cloning of a human B1 bradykinin receptor. J Biol Chem. 1994 Aug 26;269(34):21583–21586. [PubMed] [Google Scholar]
  35. Mizumura K., Sato J., Kumazawa T. Comparison of the effects of prostaglandins E2 and I2 on testicular nociceptor activities studied in vitro. Naunyn Schmiedebergs Arch Pharmacol. 1991 Sep;344(3):368–376. doi: 10.1007/BF00183013. [DOI] [PubMed] [Google Scholar]
  36. Morgan-Boyd R., Stewart J. M., Vavrek R. J., Hassid A. Effects of bradykinin and angiotensin II on intracellular Ca2+ dynamics in endothelial cells. Am J Physiol. 1987 Oct;253(4 Pt 1):C588–C598. doi: 10.1152/ajpcell.1987.253.4.C588. [DOI] [PubMed] [Google Scholar]
  37. Nagy I., Pabla R., Matesz C., Dray A., Woolf C. J., Urban L. Cobalt uptake enables identification of capsaicin- and bradykinin-sensitive subpopulations of rat dorsal root ganglion cells in vitro. Neuroscience. 1993 Sep;56(1):241–246. doi: 10.1016/0306-4522(93)90576-2. [DOI] [PubMed] [Google Scholar]
  38. Nicol G. D., Cui M. Enhancement by prostaglandin E2 of bradykinin activation of embryonic rat sensory neurones. J Physiol. 1994 Nov 1;480(Pt 3):485–492. doi: 10.1113/jphysiol.1994.sp020377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Perkins M. N., Campbell E., Dray A. Antinociceptive activity of the bradykinin B1 and B2 receptor antagonists, des-Arg9, [Leu8]-BK and HOE 140, in two models of persistent hyperalgesia in the rat. Pain. 1993 May;53(2):191–197. doi: 10.1016/0304-3959(93)90080-9. [DOI] [PubMed] [Google Scholar]
  40. Perkins M. N., Kelly D. Interleukin-1 beta induced-desArg9bradykinin-mediated thermal hyperalgesia in the rat. Neuropharmacology. 1994 May;33(5):657–660. doi: 10.1016/0028-3908(94)90171-6. [DOI] [PubMed] [Google Scholar]
  41. Proud D., Kaplan A. P. Kinin formation: mechanisms and role in inflammatory disorders. Annu Rev Immunol. 1988;6:49–83. doi: 10.1146/annurev.iy.06.040188.000405. [DOI] [PubMed] [Google Scholar]
  42. Regoli D., Barabé J. Pharmacology of bradykinin and related kinins. Pharmacol Rev. 1980 Mar;32(1):1–46. [PubMed] [Google Scholar]
  43. Regoli D., Drapeau G., Rovero P., Dion S., Rhaleb N. E., Barabé J., D'Orléans-Juste P., Ward P. Conversion of kinins and their antagonists into B1 receptor activators and blockers in isolated vessels. Eur J Pharmacol. 1986 Aug 15;127(3):219–224. doi: 10.1016/0014-2999(86)90367-5. [DOI] [PubMed] [Google Scholar]
  44. Regoli D., Marceau F., Barabé J. De novo formation of vascular receptors for bradykinin. Can J Physiol Pharmacol. 1978 Aug;56(4):674–677. doi: 10.1139/y78-109. [DOI] [PubMed] [Google Scholar]
  45. Rueff A., Dray A. Sensitization of peripheral afferent fibres in the in vitro neonatal rat spinal cord-tail by bradykinin and prostaglandins. Neuroscience. 1993 May;54(2):527–535. doi: 10.1016/0306-4522(93)90272-h. [DOI] [PubMed] [Google Scholar]
  46. Schneck K. A., Hess J. F., Stonesifer G. Y., Ransom R. W. Bradykinin B1 receptors in rabbit aorta smooth muscle cells in culture. Eur J Pharmacol. 1994 Feb 15;266(3):277–282. doi: 10.1016/0922-4106(94)90137-6. [DOI] [PubMed] [Google Scholar]
  47. Seabrook G. R., Bowery B. J., Hill R. G. Bradykinin receptors in mouse and rat isolated superior cervical ganglia. Br J Pharmacol. 1995 May;115(2):368–372. doi: 10.1111/j.1476-5381.1995.tb15887.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Smith J. A., Webb C., Holford J., Burgess G. M. Signal transduction pathways for B1 and B2 bradykinin receptors in bovine pulmonary artery endothelial cells. Mol Pharmacol. 1995 Mar;47(3):525–534. [PubMed] [Google Scholar]
  49. Steranka L. R., Manning D. C., DeHaas C. J., Ferkany J. W., Borosky S. A., Connor J. R., Vavrek R. J., Stewart J. M., Snyder S. H. Bradykinin as a pain mediator: receptors are localized to sensory neurons, and antagonists have analgesic actions. Proc Natl Acad Sci U S A. 1988 May;85(9):3245–3249. doi: 10.1073/pnas.85.9.3245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Szabó C., Wu C. C., Gross S. S., Thiemermann C., Vane J. R. Interleukin-1 contributes to the induction of nitric oxide synthase by endotoxin in vivo. Eur J Pharmacol. 1993 Nov 30;250(1):157–160. doi: 10.1016/0014-2999(93)90634-t. [DOI] [PubMed] [Google Scholar]
  51. Thayer S. A., Perney T. M., Miller R. J. Regulation of calcium homeostasis in sensory neurons by bradykinin. J Neurosci. 1988 Nov;8(11):4089–4097. doi: 10.1523/JNEUROSCI.08-11-04089.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Thompson S. W., Dray A., Urban L. Leukemia inhibitory factor induces mechanical allodynia but not thermal hyperalgesia in the juvenile rat. Neuroscience. 1996 Apr;71(4):1091–1094. doi: 10.1016/0306-4522(95)00537-4. [DOI] [PubMed] [Google Scholar]
  53. Tiffany C. W., Burch R. M. Bradykinin stimulates tumor necrosis factor and interleukin-1 release from macrophages. FEBS Lett. 1989 Apr 24;247(2):189–192. doi: 10.1016/0014-5793(89)81331-6. [DOI] [PubMed] [Google Scholar]
  54. Tropea M. M., Gummelt D., Herzig M. S., Leeb-Lundberg L. M. B1 and B2 kinin receptors on cultured rabbit superior mesenteric artery smooth muscle cells: receptor-specific stimulation of inositol phosphate formation and arachidonic acid release by des-Arg9-bradykinin and bradykinin. J Pharmacol Exp Ther. 1993 Feb;264(2):930–937. [PubMed] [Google Scholar]
  55. Webb M., McIntyre P., Phillips E. B1 and B2 bradykinin receptors encoded by distinct mRNAs. J Neurochem. 1994 Apr;62(4):1247–1253. doi: 10.1046/j.1471-4159.1994.62041247.x. [DOI] [PubMed] [Google Scholar]
  56. deBlois D., Bouthillier J., Marceau F. Pharmacological modulation of the up-regulated responses to des-Arg9-bradykinin in vivo and in vitro. Immunopharmacology. 1989 May-Jun;17(3):187–198. doi: 10.1016/0162-3109(89)90047-7. [DOI] [PubMed] [Google Scholar]
  57. deBlois D., Bouthillier J., Marceau F. Pulse exposure to protein synthesis inhibitors enhances vascular responses to des-Arg9-bradykinin: possible role of interleukin-1. Br J Pharmacol. 1991 May;103(1):1057–1066. doi: 10.1111/j.1476-5381.1991.tb12300.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES