Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Jul;118(6):1377–1384. doi: 10.1111/j.1476-5381.1996.tb15548.x

Cardiovascular effects of a novel, potent and selective phosphodiesterase 5 inhibitor, DMPPO: in vitro and in vivo characterization.

E Delpy 1, A C le Monnier de Gouville 1
PMCID: PMC1909653  PMID: 8832060

Abstract

1. The aim of this study was to investigate the cardiovascular effects of a novel, potent and specific phosphodiesterase 5 (PDE 5) inhibitor, 1,3 dimethyl-6-(2-propoxy-5-methane sulphonylamidophenyl)-pyrazolo[3,4-d]pyrimidin-4-(5H)-one (DMPPO) in phenylephrine-precontracted rat aortic rings and different in vivo rat preparations. 2. DMPPO elicited a concentration-dependent relaxation of rat aortic rings with functional endothelium. DMPPO-induced relaxation was abolished by endothelium removal or pretreatment with the soluble guanylate cyclase inhibitor, methylene blue (10 microM). 3. In aortic rings without endothelium, the potency (pD2= -log10 EC50) of atrial natriuretic peptide (ANP) to induce relaxation increased from 8.13 +/- 0.05 in the absence of DMPPO, to 8.32 +/- 0.05 and 8.52 +/- 0.08 in the presence of 30 nM and 100 nM DMPPO, respectively. Similarly, the potency of sodium nitroprusside (SNP) in inducing relaxation increased from 7.38 +/- 0.07 in the absence of the PDE 5 inhibitor to 8.07 +/- 0.11 and 8.15 +/- 0.08 in the presence of 30 nM and 100 nM DMPPO, respectively. In contrast, relaxation to the adenylate cyclase activator, forskolin, was unchanged by DMPPO (100 nM). 4. In rings without endothelium, DMPPO (100 nM) increased by 2.5 fold intracellular levels of guanosine 3':5'-cyclic monophosphate (cyclic GMP). Moreover, DMPPO (100 nM) potentiated the increases in cyclic GMP levels induced by ANP (30 nM) by 3 fold and SNP (30 nM) by 2.7 fold. Adenosine 3':5'-cyclic monophosphate (cyclic AMP) levels were not modified by DMPPO. 5. In anaesthetized normotensive or spontaneously hypertensive rats (SHR), DMPPO (2 and 5 mg kg-1, i.v.) lowered blood pressure without affecting heart rate. Similarly, in conscious SHR, orally administered DMPPO (5 mg kg-1) induced a 25 mmHg decrease in blood pressure for at least 7 h without modifying heart rate. Meanwhile, urinary cyclic GMP was increased by 50% whereas cyclic AMP remained unchanged. 6. In normotensive anaesthetized rats, sodium nitroprusside (SNP) (i.v. bolus) induced a decrease in blood pressure which rapidly returned to baseline. In DMPPO (1 mg kg-1, i.v.)-treated rats, the hypotensive effects of SNP (10 to 100 micrograms kg-1) were prolonged over time whereas the peak effect was unchanged. 7. In pithed rats, phenylephrine (i.v. bolus) induced dose-dependent increases in blood pressure. Pretreatment with DMPPO (5 mg kg-1, i.v.) partially inhibited the pressor response to phenylephrine (0.3 to 100 micrograms kg-1). 8. In conclusion, the potent and selective PDE 5 inhibitor, DMPPO, produces relaxation in isolated vessels in the presence of a cyclic GMP drive and reduces blood pressure of intact animals. Its high oral bioavailability and long duration of action should make it a useful tool to study the role of cyclic GMP in various biological systems.

Full text

PDF
1377

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anand-Srivastava M. B., Trachte G. J. Atrial natriuretic factor receptors and signal transduction mechanisms. Pharmacol Rev. 1993 Dec;45(4):455–497. [PubMed] [Google Scholar]
  2. Bohlen H. G. Arteriolar closure mediated by hyperresponsiveness to norepinephrine in hypertensive rats. Am J Physiol. 1979 Jan;236(1):H157–H164. doi: 10.1152/ajpheart.1979.236.1.H157. [DOI] [PubMed] [Google Scholar]
  3. Burnett J. C., Jr, Kao P. C., Hu D. C., Heser D. W., Heublein D., Granger J. P., Opgenorth T. J., Reeder G. S. Atrial natriuretic peptide elevation in congestive heart failure in the human. Science. 1986 Mar 7;231(4742):1145–1147. doi: 10.1126/science.2935937. [DOI] [PubMed] [Google Scholar]
  4. Buxton I. L., Brunton L. L. Compartments of cyclic AMP and protein kinase in mammalian cardiomyocytes. J Biol Chem. 1983 Sep 10;258(17):10233–10239. [PubMed] [Google Scholar]
  5. Christodoulides N., Durante W., Kroll M. H., Schafer A. I. Vascular smooth muscle cell heme oxygenases generate guanylyl cyclase-stimulatory carbon monoxide. Circulation. 1995 May 1;91(9):2306–2309. doi: 10.1161/01.cir.91.9.2306. [DOI] [PubMed] [Google Scholar]
  6. Cornwell T. L., Pryzwansky K. B., Wyatt T. A., Lincoln T. M. Regulation of sarcoplasmic reticulum protein phosphorylation by localized cyclic GMP-dependent protein kinase in vascular smooth muscle cells. Mol Pharmacol. 1991 Dec;40(6):923–931. [PubMed] [Google Scholar]
  7. Coste H., Grondin P. Characterization of a novel potent and specific inhibitor of type V phosphodiesterase. Biochem Pharmacol. 1995 Nov 9;50(10):1577–1585. doi: 10.1016/0006-2952(95)02031-4. [DOI] [PubMed] [Google Scholar]
  8. Fülle H. J., Garbers D. L. Guanylyl cyclases: a family of receptor-linked enzymes. Cell Biochem Funct. 1994 Sep;12(3):157–165. doi: 10.1002/cbf.290120303. [DOI] [PubMed] [Google Scholar]
  9. Garbers D. L. Guanylate cyclase, a cell surface receptor. J Biol Chem. 1989 Jun 5;264(16):9103–9106. [PubMed] [Google Scholar]
  10. Gerzer R., Hofmann F., Schultz G. Purification of a soluble, sodium-nitroprusside-stimulated guanylate cyclase from bovine lung. Eur J Biochem. 1981 Jun 1;116(3):479–486. doi: 10.1111/j.1432-1033.1981.tb05361.x. [DOI] [PubMed] [Google Scholar]
  11. Giles T. D., Quiroz A. C., Roffidal L. E., Marder H., Sander G. E. Prolonged hemodynamic benefits from a high-dose bolus injection of human atrial natriuretic factor in congestive heart failure. Clin Pharmacol Ther. 1991 Nov;50(5 Pt 1):557–563. doi: 10.1038/clpt.1991.181. [DOI] [PubMed] [Google Scholar]
  12. Greenberg S. S., Diecke F. P., Cantor E., Peevy K., Tanaka T. P. Inhibition of sympathetic neurotransmitter release by modulators of cyclic GMP in canine vascular smooth muscle. Eur J Pharmacol. 1990 Oct 23;187(3):409–423. doi: 10.1016/0014-2999(90)90368-g. [DOI] [PubMed] [Google Scholar]
  13. Greenberg S. S., Diecke F. P., Peevy K., Tanaka T. P. Release of norepinephrine from adrenergic nerve endings of blood vessels is modulated by endothelium-derived relaxing factor. Am J Hypertens. 1990 Mar;3(3):211–218. doi: 10.1093/ajh/3.3.211. [DOI] [PubMed] [Google Scholar]
  14. Gruetter C. A., Gruetter D. Y., Lyon J. E., Kadowitz P. J., Ignarro L. J. Relationship between cyclic guanosine 3':5'-monophosphate formation and relaxation of coronary arterial smooth muscle by glyceryl trinitrate, nitroprusside, nitrite and nitric oxide: effects of methylene blue and methemoglobin. J Pharmacol Exp Ther. 1981 Oct;219(1):181–186. [PubMed] [Google Scholar]
  15. Hamet P., Pang S. C., Tremblay J. Atrial natriuretic factor-induced egression of cyclic guanosine 3':5'-monophosphate in cultured vascular smooth muscle and endothelial cells. J Biol Chem. 1989 Jul 25;264(21):12364–12369. [PubMed] [Google Scholar]
  16. Harris A. L., Lemp B. M., Bentley R. G., Perrone M. H., Hamel L. T., Silver P. J. Phosphodiesterase isozyme inhibition and the potentiation by zaprinast of endothelium-derived relaxing factor and guanylate cyclase stimulating agents in vascular smooth muscle. J Pharmacol Exp Ther. 1989 May;249(2):394–400. [PubMed] [Google Scholar]
  17. Hayes J. S., Brunton L. L., Mayer S. E. Selective activation of particulate cAMP-dependent protein kinase by isoproterenol and prostaglandin E1. J Biol Chem. 1980 Jun 10;255(11):5113–5119. [PubMed] [Google Scholar]
  18. Hohl C. M., Li Q. A. Compartmentation of cAMP in adult canine ventricular myocytes. Relation to single-cell free Ca2+ transients. Circ Res. 1991 Nov;69(5):1369–1379. doi: 10.1161/01.res.69.5.1369. [DOI] [PubMed] [Google Scholar]
  19. Ignarro L. J. Haem-dependent activation of cytosolic guanylate cyclase by nitric oxide: a widespread signal transduction mechanism. Biochem Soc Trans. 1992 May;20(2):465–469. doi: 10.1042/bst0200465. [DOI] [PubMed] [Google Scholar]
  20. Ignarro L. J., Kadowitz P. J. The pharmacological and physiological role of cyclic GMP in vascular smooth muscle relaxation. Annu Rev Pharmacol Toxicol. 1985;25:171–191. doi: 10.1146/annurev.pa.25.040185.001131. [DOI] [PubMed] [Google Scholar]
  21. Komas N., Lugnier C., Stoclet J. C. Endothelium-dependent and independent relaxation of the rat aorta by cyclic nucleotide phosphodiesterase inhibitors. Br J Pharmacol. 1991 Oct;104(2):495–503. doi: 10.1111/j.1476-5381.1991.tb12457.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Li F., Joshua I. G. Decreased arteriolar endothelium-derived relaxing factor production during the development of genetic hypertension. Clin Exp Hypertens. 1993 May;15(3):511–526. doi: 10.3109/10641969309041626. [DOI] [PubMed] [Google Scholar]
  23. Lüscher T. F. Endothelium-derived nitric oxide: the endogenous nitrovasodilator in the human cardiovascular system. Eur Heart J. 1991 Nov;12 (Suppl E):2–11. doi: 10.1093/eurheartj/12.suppl_e.2. [DOI] [PubMed] [Google Scholar]
  24. Manganiello V. C., Murata T., Taira M., Belfrage P., Degerman E. Diversity in cyclic nucleotide phosphodiesterase isoenzyme families. Arch Biochem Biophys. 1995 Sep 10;322(1):1–13. doi: 10.1006/abbi.1995.1429. [DOI] [PubMed] [Google Scholar]
  25. McMahon E. G., Palomo M. A., Mehta P., Olins G. M. Depressor and natriuretic effects of M&B 22,948, a guanosine cyclic 3',5'-monophosphate-selective phosphodiesterase inhibitor. J Pharmacol Exp Ther. 1989 Dec;251(3):1000–1005. [PubMed] [Google Scholar]
  26. Mellion B. T., Ignarro L. J., Ohlstein E. H., Pontecorvo E. G., Hyman A. L., Kadowitz P. J. Evidence for the inhibitory role of guanosine 3', 5'-monophosphate in ADP-induced human platelet aggregation in the presence of nitric oxide and related vasodilators. Blood. 1981 May;57(5):946–955. [PubMed] [Google Scholar]
  27. Merkel L. A., Rivera L. M., Perrone M. H., Lappe R. W. In vitro and in vivo interactions of nitrovasodilators and zaprinast, a cGMP-selective phosphodiesterase inhibitor. Eur J Pharmacol. 1992 May 27;216(1):29–35. doi: 10.1016/0014-2999(92)90205-i. [DOI] [PubMed] [Google Scholar]
  28. Micheli D., Collodel A., Semeraro C., Gaviraghi G., Carpi C. Lacidipine: a calcium antagonist with potent and long-lasting antihypertensive effects in animal studies. J Cardiovasc Pharmacol. 1990 Apr;15(4):666–675. [PubMed] [Google Scholar]
  29. Mochly-Rosen D. Localization of protein kinases by anchoring proteins: a theme in signal transduction. Science. 1995 Apr 14;268(5208):247–251. doi: 10.1126/science.7716516. [DOI] [PubMed] [Google Scholar]
  30. Moe G. W., Canepa-Anson R., Armstrong P. W. Atrial natriuretic factor: pharmacokinetics and cyclic GMP response in relation to biologic effects in severe heart failure. J Cardiovasc Pharmacol. 1992 May;19(5):691–700. [PubMed] [Google Scholar]
  31. Morita T., Perrella M. A., Lee M. E., Kourembanas S. Smooth muscle cell-derived carbon monoxide is a regulator of vascular cGMP. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1475–1479. doi: 10.1073/pnas.92.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Murad F. Cyclic guanosine monophosphate as a mediator of vasodilation. J Clin Invest. 1986 Jul;78(1):1–5. doi: 10.1172/JCI112536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Nakamura M., Arakawa N., Yoshida H., Makita S., Hiramori K. Vasodilatory effects of C-type natriuretic peptide on forearm resistance vessels are distinct from those of atrial natriuretic peptide in chronic heart failure. Circulation. 1994 Sep;90(3):1210–1214. doi: 10.1161/01.cir.90.3.1210. [DOI] [PubMed] [Google Scholar]
  34. Packer M. What causes tolerance to nitroglycerin? The 100 year old mystery continues. J Am Coll Cardiol. 1990 Oct;16(4):932–935. doi: 10.1016/s0735-1097(10)80343-2. [DOI] [PubMed] [Google Scholar]
  35. Papapetropoulos A., Marczin N., Snead M. D., Cheng C., Milici A., Catravas J. D. Smooth muscle cell responsiveness to nitrovasodilators in hypertensive and normotensive rats. Hypertension. 1994 Apr;23(4):476–484. doi: 10.1161/01.hyp.23.4.476. [DOI] [PubMed] [Google Scholar]
  36. Ruth P., Wang G. X., Boekhoff I., May B., Pfeifer A., Penner R., Korth M., Breer H., Hofmann F. Transfected cGMP-dependent protein kinase suppresses calcium transients by inhibition of inositol 1,4,5-trisphosphate production. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2623–2627. doi: 10.1073/pnas.90.7.2623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Saeki T., Adachi H., Takase Y., Yoshitake S., Souda S., Saito I. A selective type V phosphodiesterase inhibitor, E4021, dilates porcine large coronary artery. J Pharmacol Exp Ther. 1995 Feb;272(2):825–831. [PubMed] [Google Scholar]
  38. Saeki T., Saito I. Isolation of cyclic nucleotide phosphodiesterase isozymes from pig aorta. Biochem Pharmacol. 1993 Sep 1;46(5):833–839. doi: 10.1016/0006-2952(93)90492-f. [DOI] [PubMed] [Google Scholar]
  39. Sawada Y., Sakamaki T., Nakamura T., Sato K., Ono Z., Murata K. Release of nitric oxide in response to acetylcholine is unaltered in spontaneously hypertensive rats. J Hypertens. 1994 Jul;12(7):745–750. [PubMed] [Google Scholar]
  40. Silver P. J., Dundore R. L., Bode D. C., de Garavilla L., Buchholz R. A., van Aller G., Hamel L. T., Bacon E., Singh B., Lesher G. Y. Cyclic GMP potentiation by WIN 58237, a novel cyclic nucleotide phosphodiesterase inhibitor. J Pharmacol Exp Ther. 1994 Dec;271(3):1143–1149. [PubMed] [Google Scholar]
  41. Tominaga M., Fujii K., Abe I., Takata Y., Kobayashi K., Fujishima M. Hypertension and ageing impair acetylcholine-induced vasodilation in rats. J Hypertens. 1994 Mar;12(3):259–268. [PubMed] [Google Scholar]
  42. Trapani A. J., Smits G. J., McGraw D. E., McMahon E. G., Blaine E. H. Hemodynamic basis for the depressor activity of zaprinast, a selective cyclic GMP phosphodiesterase inhibitor. J Pharmacol Exp Ther. 1991 Jul 1;258(1):269–274. [PubMed] [Google Scholar]
  43. Xiao R. P., Hohl C., Altschuld R., Jones L., Livingston B., Ziman B., Tantini B., Lakatta E. G. Beta 2-adrenergic receptor-stimulated increase in cAMP in rat heart cells is not coupled to changes in Ca2+ dynamics, contractility, or phospholamban phosphorylation. J Biol Chem. 1994 Jul 22;269(29):19151–19156. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES