Abstract
1. A phospholipase A2 (PLA2) represents the key enzyme in the remodelling pathway of platelet-activating factor (PAF) synthesis in human polymorphonuclear (PMN) leucocytes. 2. PLA2 activation is also the rate-limiting step for the release of the arachidonic acid utilized for the synthesis of leukotrienes in stimulated leucocytes; however, it is unknown whether the PLA2s involved in the two biosynthetic pathways are identical. 3. Cloricromene (8-monochloro-3-beta-diethylaminoethyl-4-methyl-7-ethoxy- carbonylmethoxy coumarin) is an antithrombotic coumarin derivative which inhibits platelet and leucocyte function and suppresses arachidonic acid liberation by interfering with PLA2 activation. 4. The aim of the present study was to assess whether chloricromene inhibits PAF synthesis by stimulated human polymorphonuclear leucocytes (PMNs). 5. Cloricromene (50-500 microM) inhibited in a concentration-dependent manner the release of PAF, as measured by h.p.l.c. bioassay, from A23187-stimulated PMNs. Significant inhibition (45%) of PAF-release was obtained with 50 microM cloricromene and the IC50 was 85 microM. Mepacrine (500 microM), a non-specific PLA2 inhibitor, strikingly reduced PAF release. 6. The incorporation of [3H]-acetate into [3H]-PAF induced by serum-treated zymosan in human PMNs was also inhibited concentration-dependently by cloricromene, with an IC50 of 105 microM. Mepacrine also suppressed [3H]-acetate incorporation into [3H]-PAF. 7. Cloricromene did not affect the activities of the enzymes involved in PAF-synthesis acetyltransferase or phosphocholine transferase. 8. Our data demonstrate that cloricromene, an inhibitor of PLA2-activation in human leucocytes, reduces the synthesis of PAF by stimulated PMNs. This finding has a twofold implication: the PLA2s (or the mechanisms that regulate their activation) involved in PAF synthesis and arachidonate release in human leucocytes are either identical or else indistinguishable by their sensitivity to cloricromene; the inhibition of PAF release by activated leucocytes may contribute to the antithrombotic and anti-ischaemic activities exerted by cloricromene.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abramson S. B., Leszczynska-Piziak J., Weissmann G. Arachidonic acid as a second messenger. Interactions with a GTP-binding protein of human neutrophils. J Immunol. 1991 Jul 1;147(1):231–236. [PubMed] [Google Scholar]
- Albert D. H., Snyder F. Biosynthesis of 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine (platelet-activating factor) from 1-alkyl-2-acyl-sn-glycero-3-phosphocholine by rat alveolar macrophages. Phospholipase A2 and acetyltransferase activities during phagocytosis and ionophore stimulation. J Biol Chem. 1983 Jan 10;258(1):97–102. [PubMed] [Google Scholar]
- Alonso F., Gil M. G., Sánchez-Crespo M., Mato J. M. Activation of 1-alkyl-2-lysoglycero-3-phosphocholine. Acetyl-CoA transferase during phagocytosis in human polymorphonuclear leukocytes. J Biol Chem. 1982 Apr 10;257(7):3376–3378. [PubMed] [Google Scholar]
- Aporti F., Finesso M., Granata L. Effects of 8-monochloro-3-beta-diethylaminoethyl-4-methyl-7-ethoxycarbonylmethoxy coumarin (AD6) on the coronary circulation in the dog. Pharmacol Res Commun. 1978 May;10(5):469–477. doi: 10.1016/s0031-6989(78)80037-x. [DOI] [PubMed] [Google Scholar]
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Benveniste J., Chignard M., Le Couedic J. P., Vargaftig B. B. Biosynthesis of platelet-activating factor (PAF-ACETHER). II. Involvement of phospholipase A2 in the formation of PAF-ACETHER and lyso-PAF-ACETHER from rabbit platelets. Thromb Res. 1982 Mar 1;25(5):375–385. doi: 10.1016/0049-3848(82)90128-1. [DOI] [PubMed] [Google Scholar]
- Bomalaski J. S., Baker D. G., Brophy L., Resurreccion N. V., Spilberg I., Muniain M., Clark M. A. A phospholipase A2-activating protein (PLAP) stimulates human neutrophil aggregation and release of lysosomal enzymes, superoxide, and eicosanoids. J Immunol. 1989 Jun 1;142(11):3957–3962. [PubMed] [Google Scholar]
- Braquet P., Touqui L., Shen T. Y., Vargaftig B. B. Perspectives in platelet-activating factor research. Pharmacol Rev. 1987 Jun;39(2):97–145. [PubMed] [Google Scholar]
- Camussi G., Tetta C., Bussolino F., Metafora S., Peluso G., Esposito C., Porta R. An anti-inflammatory protein secreted from the rat seminal vesicle epithelium inhibits the synthesis of platelet-activating factor and the release of arachidonic acid and prostacyclin. Eur J Biochem. 1990 Sep 11;192(2):481–485. doi: 10.1111/j.1432-1033.1990.tb19251.x. [DOI] [PubMed] [Google Scholar]
- Channon J. Y., Leslie C. C. A calcium-dependent mechanism for associating a soluble arachidonoyl-hydrolyzing phospholipase A2 with membrane in the macrophage cell line RAW 264.7. J Biol Chem. 1990 Apr 5;265(10):5409–5413. [PubMed] [Google Scholar]
- Chilton F. H., Cluzel M., Triggiani M. Recent advances in our understanding of the biochemical interactions between platelet-activating factor and arachidonic acid. Lipids. 1991 Dec;26(12):1021–1027. doi: 10.1007/BF02536495. [DOI] [PubMed] [Google Scholar]
- Chilton F. H., Ellis J. M., Olson S. C., Wykle R. L. 1-O-alkyl-2-arachidonoyl-sn-glycero-3-phosphocholine. A common source of platelet-activating factor and arachidonate in human polymorphonuclear leukocytes. J Biol Chem. 1984 Oct 10;259(19):12014–12019. [PubMed] [Google Scholar]
- Cirillo R., Salvatico E., Aliev G., Prosdocimi M. Effect of cloricromene during ischemia and reperfusion of rabbit hindlimb: evidence for an involvement of leukocytes in reperfusion-mediated tissue and vascular injury. J Cardiovasc Pharmacol. 1992 Dec;20(6):969–975. doi: 10.1097/00005344-199212000-00018. [DOI] [PubMed] [Google Scholar]
- Del Maschio A., Bazzoni G., Zatta A., Chen Z. M., Dejana E., Prosdocimi M. Cloricromene inhibits the activation of human platelets by ADP alone or in combination with adrenaline. Eur J Pharmacol. 1990 Oct 23;187(3):541–545. doi: 10.1016/0014-2999(90)90384-i. [DOI] [PubMed] [Google Scholar]
- Dennis E. A. Diversity of group types, regulation, and function of phospholipase A2. J Biol Chem. 1994 May 6;269(18):13057–13060. [PubMed] [Google Scholar]
- Diez E., Chilton F. H., Stroup G., Mayer R. J., Winkler J. D., Fonteh A. N. Fatty acid and phospholipid selectivity of different phospholipase A2 enzymes studied by using a mammalian membrane as substrate. Biochem J. 1994 Aug 1;301(Pt 3):721–726. doi: 10.1042/bj3010721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doebber T. W., Wu M. S., Robbins J. C., Choy B. M., Chang M. N., Shen T. Y. Platelet activating factor (PAF) involvement in endotoxin-induced hypotension in rats. Studies with PAF-receptor antagonist kadsurenone. Biochem Biophys Res Commun. 1985 Mar 29;127(3):799–808. doi: 10.1016/s0006-291x(85)80014-0. [DOI] [PubMed] [Google Scholar]
- Fonteh A. N., Winkler J. D., Torphy T. J., Heravi J., Undem B. J., Chilton F. H. Influence of isoproterenol and phosphodiesterase inhibitors on platelet-activating factor biosynthesis in the human neutrophil. J Immunol. 1993 Jul 1;151(1):339–350. [PubMed] [Google Scholar]
- Fradin A., Zirrolli J. A., Maclouf J., Vausbinder L., Henson P. M., Murphy R. C. Platelet-activating factor and leukotriene biosynthesis in whole blood. A model for the study of transcellular arachidonate metabolism. J Immunol. 1989 Dec 1;143(11):3680–3685. [PubMed] [Google Scholar]
- Garcia Rodriguez C., Montero M., Alvarez J., García-Sancho J., Sánchez Crespo M. Dissociation of platelet-activating factor production and arachidonate release by the endomembrane Ca(2+)-ATPase inhibitor thapsigargin. Evidence for the involvement of a Ca(2+)-dependent route of priming in the production of lipid mediators by human polymorphonuclear leukocytes. J Biol Chem. 1993 Nov 25;268(33):24751–24757. [PubMed] [Google Scholar]
- Garcia C., Montero M., Alvarez J., Sanchez Crespo M. Biosynthesis of platelet-activating factor (PAF) induced by chemotactic peptide is modulated at the lyso-PAF:acetyl-CoA acetyltransferase level by calcium transient and phosphatidic acid. J Biol Chem. 1993 Feb 25;268(6):4001–4008. [PubMed] [Google Scholar]
- Glaser K. B., Lock Y. W., Chang J. Y. PAF and LTB4 biosynthesis in the human neutrophil: effects of putative inhibitors of phospholipase A2 and specific inhibitors of 5-lipoxygenase. Agents Actions. 1991 Sep;34(1-2):89–92. doi: 10.1007/BF01993246. [DOI] [PubMed] [Google Scholar]
- Goracci G., Francescangeli E. Properties of PAF-synthesizing phosphocholinetransferase and evidence for lysoPAF acetyltransferase activity in rat brain. Lipids. 1991 Dec;26(12):986–991. doi: 10.1007/BF02536489. [DOI] [PubMed] [Google Scholar]
- Gresele P., Arnout J., Coene M. C., Deckmyn H., Vermylen J. Leukotriene B4 production by stimulated whole blood: comparative studies with isolated polymorphonuclear cells. Biochem Biophys Res Commun. 1986 May 29;137(1):334–342. doi: 10.1016/0006-291x(86)91215-5. [DOI] [PubMed] [Google Scholar]
- Gresele P., Ribaldi E., Mezzasoma A. M., Quero E., Stasi M., Prosdocimi M., Goracci G., Nenci G. G. Cloricromene inhibits leukotriene formation by human polymorphonuclear leucocytes by suppressing arachidonate release from membrane phospholipids. Biochem Pharmacol. 1993 Jan 7;45(1):123–130. doi: 10.1016/0006-2952(93)90384-9. [DOI] [PubMed] [Google Scholar]
- Hakim G., Fiorentini D., Falasca A., Prosdocimi M., Rossi C. A. Effect of AD6 (8-monochloro-3-beta-diethylamino-ethyl-4-methyl-7-ethoxycarbonylme tho xy coumarin) on cyclic nucleotide phosphodiesterases in human platelets. Experientia. 1988 Mar 15;44(3):226–228. doi: 10.1007/BF01941715. [DOI] [PubMed] [Google Scholar]
- Hofmann S. L., Prescott S. M., Majerus P. W. The effects of mepacrine and p-bromophenacyl bromide on arachidonic acid release in human platelets. Arch Biochem Biophys. 1982 Apr 15;215(1):237–244. doi: 10.1016/0003-9861(82)90300-9. [DOI] [PubMed] [Google Scholar]
- Koltai M., Hosford D., Guinot P., Esanu A., Braquet P. Platelet activating factor (PAF). A review of its effects, antagonists and possible future clinical implications (Part I). Drugs. 1991 Jul;42(1):9–29. doi: 10.2165/00003495-199142010-00002. [DOI] [PubMed] [Google Scholar]
- Laffi G., Carloni V., Baldi E., Rossi M. E., Azzari C., Gresele P., Marra F., Gentilini P. Impaired superoxide anion, platelet-activating factor, and leukotriene B4 synthesis by neutrophils in cirrhosis. Gastroenterology. 1993 Jul;105(1):170–177. doi: 10.1016/0016-5085(93)90023-6. [DOI] [PubMed] [Google Scholar]
- Leyravaud S., Bossant M. J., Joly F., Bessou G., Benveniste J., Ninio E. Biosynthesis of paf-acether. X. Phorbol myristate acetate-induced paf-acether biosynthesis and acetyltransferase activation in human neutrophils. J Immunol. 1989 Jul 1;143(1):245–249. [PubMed] [Google Scholar]
- Lidbury P. S., Cirillo R., Vane J. R. Dissociation of the anti-ischaemic effects of cloricromene from its anti-platelet activity. Br J Pharmacol. 1993 Sep;110(1):275–280. doi: 10.1111/j.1476-5381.1993.tb13805.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lotner G. Z., Lynch J. M., Betz S. J., Henson P. M. Human neutrophil-derived platelet activating factor. J Immunol. 1980 Feb;124(2):676–684. [PubMed] [Google Scholar]
- Lynch J. M., Henson P. M. The intracellular retention of newly synthesized platelet-activating factor. J Immunol. 1986 Oct 15;137(8):2653–2661. [PubMed] [Google Scholar]
- Marshall L. A., Hall R. H., Winkler J. D., Badger A., Bolognese B., Roshak A., Flamberg P. L., Sung C. M., Chabot-Fletcher M., Adams J. L. SB 203347, an inhibitor of 14 kDa phospholipase A2, alters human neutrophil arachidonic acid release and metabolism and prolongs survival in murine endotoxin shock. J Pharmacol Exp Ther. 1995 Sep;274(3):1254–1262. [PubMed] [Google Scholar]
- Nieto M. L., Velasco S., Sanchez Crespo M. Biosynthesis of platelet-activating factor in human polymorphonuclear leukocytes. Involvement of the cholinephosphotransferase pathway in response to the phorbol esters. J Biol Chem. 1988 Feb 15;263(5):2217–2222. [PubMed] [Google Scholar]
- Nieto M. L., Velasco S., Sanchez Crespo M. Modulation of acetyl-CoA:1-alkyl-2-lyso-sn-glycero-3-phosphocholine (lyso-PAF) acetyltransferase in human polymorphonuclears. The role of cyclic AMP-dependent and phospholipid sensitive, calcium-dependent protein kinases. J Biol Chem. 1988 Apr 5;263(10):4607–4611. [PubMed] [Google Scholar]
- Page C. P., Spina D. The therapeutic relevance of PAF antagonists. Agents Actions Suppl. 1989;28:313–329. [PubMed] [Google Scholar]
- Pinckard R. N., Farr R. S., Hanahan D. J. Physicochemical and functional identity of rabbit platelet-activating factor (PAF) released in vivo during IgE anaphylaxis with PAF released in vitro from IgE sensitized basophils. J Immunol. 1979 Oct;123(4):1847–1857. [PubMed] [Google Scholar]
- Ponpipom M. M., Hwang S. B., Doebber T. W., Acton J. J., Alberts A. W., Biftu T., Brooker D. R., Bugianesi R. L., Chabala J. C., Gamble N. L. (+/-)-trans-2-(3-Methoxy-5-methylsulfonyl-4-propoxyphenyl)-5-(3,4,5- trimethoxyphenyl)tetrahydrofuran (L-659,989), a novel, potent PAF receptor antagonist. Biochem Biophys Res Commun. 1988 Feb 15;150(3):1213–1220. doi: 10.1016/0006-291x(88)90758-9. [DOI] [PubMed] [Google Scholar]
- Porcellati S., Costantini V., Prosdocimi M., Stasi M., Pistolesi R., Nenci G. G., Goracci G. The coumarin derivative AD6 inhibits the release of arachidonic acid by interfering with phospholipase A2 activity in human platelets stimulated with thrombin. Agents Actions. 1990 Mar;29(3-4):364–373. doi: 10.1007/BF01966469. [DOI] [PubMed] [Google Scholar]
- Prosdocimi M., Finesso M., Tessari F., Gorio A., Languino L. R., de Gaetano G., Dejana E. Inhibition by AD6 (8-monochloro-3-beta-diethylaminoethyl-4-methyl-7-ethoxycarbonyl methoxy coumarin) of platelet aggregation in dog stenosed coronary artery. Thromb Res. 1985 Aug 15;39(4):399–409. doi: 10.1016/0049-3848(85)90163-x. [DOI] [PubMed] [Google Scholar]
- Prosdocimi M., Zatta A., Gorio A., Zanetti A., Dejana E. Action of AD6 (8-monochloro-3-beta-diethylaminoethyl-4-methyl-7-ethoxycarbonylmet hox y coumarin) on human platelets in vitro. Naunyn Schmiedebergs Arch Pharmacol. 1986 Mar;332(3):305–310. doi: 10.1007/BF00504872. [DOI] [PubMed] [Google Scholar]
- Renooij W., Snyder F. Biosynthesis of 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine (platelet activating factor and a hypotensive lipid) by cholinephosphotransferase in various rat tissues. Biochim Biophys Acta. 1981 Feb 23;663(2):545–556. doi: 10.1016/0005-2760(81)90182-x. [DOI] [PubMed] [Google Scholar]
- Rola-Pleszczynski M. Priming of human monocytes with PAF augments their production of tumor necrosis factor. J Lipid Mediat. 1990;2 (Suppl):S77–S82. [PubMed] [Google Scholar]
- Schorer A. E., Duane P. G., Woods V. L., Niewoehner D. E. Some antiphospholipid antibodies inhibit phospholipase A2 activity. J Lab Clin Med. 1992 Jul;120(1):67–77. [PubMed] [Google Scholar]
- Shamsuddin M., Anderson J., Smith L. J. Differential regulation of leukotriene and platelet-activating factor synthesis in rat alveolar macrophages. Am J Respir Cell Mol Biol. 1995 Jun;12(6):697–704. doi: 10.1165/ajrcmb.12.6.7766433. [DOI] [PubMed] [Google Scholar]
- Silk S. T., Clejan S., Witkom K. Evidence of GTP-binding protein regulation of phospholipase A2 activity in isolated human platelet membranes. J Biol Chem. 1989 Dec 25;264(36):21466–21469. [PubMed] [Google Scholar]
- Sisson J. H., Prescott S. M., McIntyre T. M., Zimmerman G. A. Production of platelet-activating factor by stimulated human polymorphonuclear leukocytes. Correlation of synthesis with release, functional events, and leukotriene B4 metabolism. J Immunol. 1987 Jun 1;138(11):3918–3926. [PubMed] [Google Scholar]
- Squadrito F., Altavilla D., Canale P., Ioculano M., Campo G. M., Ammendolia L., Ferlito M., Zingarelli B., Squadrito G., Saitta A. Participation of tumour necrosis factor and nitric oxide in the mediation of vascular dysfunction in splanchnic artery occlusion shock. Br J Pharmacol. 1994 Dec;113(4):1153–1158. doi: 10.1111/j.1476-5381.1994.tb17118.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stasi M., Gresele P., Porcellati S., Quero E., Nenci G. G., Goracci G. Activation of phospholipase A2 and beta-thromboglobulin release in human platelets: comparative effects of thrombin and fluoroaluminate stimulation. Biochim Biophys Acta. 1992 Mar 25;1124(3):279–287. doi: 10.1016/0005-2760(92)90140-q. [DOI] [PubMed] [Google Scholar]
- Stasi M., Gresele P., Prosdocimi M., Porcellati S., Quero E., Pieretti G., Nenci G. G., Goracci G. Cloricromene inhibits G-protein-mediated activation of phospholipase A2 in human platelets. J Lipid Mediat. 1993 Jul;7(3):253–267. [PubMed] [Google Scholar]
- Sturk A., Schaap M. C., Prins A., ten Cate J. W., van den Bosch H. Synthesis of platelet-activating factor by human blood platelets and leucocytes. Evidence against selective utilization of cellular ether-linked phospholipids. Biochim Biophys Acta. 1989 Dec 8;993(2-3):148–156. doi: 10.1016/0304-4165(89)90157-8. [DOI] [PubMed] [Google Scholar]
- Tranchina S., Bernasconi S., Dejana E., Del Maschio A. Inhibition of human monocyte adhesion to endothelial cells by the coumarin derivative, cloricromene. Br J Pharmacol. 1994 Feb;111(2):575–581. doi: 10.1111/j.1476-5381.1994.tb14776.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Travagli R. A., Zatta A., Banzatto N., Finesso M., Mariot R., Tessari F., Prosdocimi M. Molecular aspects of cloricromene (AD6) distribution in human platelets and its pharmacological effects. Thromb Res. 1989 May 15;54(4):327–338. doi: 10.1016/0049-3848(89)90091-1. [DOI] [PubMed] [Google Scholar]
- Walsh C. E., Waite B. M., Thomas M. J., DeChatelet L. R. Release and metabolism of arachidonic acid in human neutrophils. J Biol Chem. 1981 Jul 25;256(14):7228–7234. [PubMed] [Google Scholar]
- Wijkander J., Sundler R. Regulation of arachidonate-mobilizing phospholipase A2 by phosphorylation via protein kinase C in macrophages. FEBS Lett. 1992 Oct 26;311(3):299–301. doi: 10.1016/0014-5793(92)81124-5. [DOI] [PubMed] [Google Scholar]
- Wykle R. L., Malone B., Snyder F. Enzymatic synthesis of 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine, a hypotensive and platelet-aggregating lipid. J Biol Chem. 1980 Nov 10;255(21):10256–10260. [PubMed] [Google Scholar]
- Zimmerman G. A., McIntyre T. M., Prescott S. M. Production of platelet-activating factor by human vascular endothelial cells: evidence for a requirement for specific agonists and modulation by prostacyclin. Circulation. 1985 Oct;72(4):718–727. doi: 10.1161/01.cir.72.4.718. [DOI] [PubMed] [Google Scholar]
- Zimmerman G. A., McIntyre T. M., Prescott S. M. Thrombin stimulates neutrophil adherence by an endothelial cell-dependent mechanism: characterization of the response and relationship to platelet-activating factor synthesis. Ann N Y Acad Sci. 1986;485:349–368. doi: 10.1111/j.1749-6632.1986.tb34596.x. [DOI] [PubMed] [Google Scholar]
