Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Jun;118(3):513–520. doi: 10.1111/j.1476-5381.1996.tb15432.x

Activation of potassium currents by inhibitors of calcium-activated chloride conductance in rabbit portal vein smooth muscle cells.

C Toma 1, I A Greenwood 1, R M Helliwell 1, W A Large 1
PMCID: PMC1909709  PMID: 8762072

Abstract

1. The conventional whole-cell recording technique was used to study the effects of the chloride channel inhibitors ethacrynic acid, anthracene-9-carboxylic acid (A-9-C) and indanyloxyacetic acid (IAA) on membrane currents in rabbit portal vein smooth muscle cells at a holding potential of 0 mV. 2. Using a pipette solution that contained 1 x 10(-4) M 1,2-bis (2-aminophenoxy)-ethane-N,N,N,N,-tetraacetic acid (BAPTA) and a normal bathing solution the addition of ethacrynic acid (2 x 10(-4) M to 1 x 10(-3) M) inhibited spontaneous transient outward currents (STOCs) and evoked a concentration-dependent current at a holding potential of 0 mV. A similar current was activated by IAA (5 x 10(-4) M to 1 x 10(-3) M) but not by A-9-C (1-5 x 10(-3) M) at a holding potential of 0 mV. 3. The amplitude of the current evoked by ethacrynic acid and IAA was linearly related to potential between -30 and 0 mV and displayed outward rectification at positive potentials. The current induced by A-9-C was evident only at potentials positive to +20 mV. 4. Glibenclamide (1 x 10(-5) M) abolished the current evoked by ethacrynic acid and IAA at potentials negative to +10 mV and partially inhibited the current positive to +10 mV. The glibenclamide-insensitive current at positive potentials was completely inhibited by 1 x 10(-3) M TEA. The A-9-C-evoked current was insensitive to glibenclamide and abolished by 1 x 10(-3) M TEA. 5. The glibenclamide-sensitive current activated by ethacrynic acid was not sustained and declined to control levels in the continued presence of ethacrynic acid. However, the outwardly rectifying current recorded at +50 mV was well maintained over the same period. 6. Outwardly rectifying currents evoked by ethacrynic acid and A-9-C were observed with a pipette solution containing 1 x 10(-2) M BAPTA in cells bathed in Ca-free extracellular solution containing 5 x 10(-4) M BAPTA and 1 x 10(-5) M cyclopiazonic acid. 7. It is concluded that all three chloride-channel blockers activated an outwardly rectifying, TEA-sensitive current. Moreover, ethacrynic acid and IAA evoked an additional glibenclamide-sensitive current which was present at all potentials between -30 and +50 mV.

Full text

PDF
513

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beech D. J., Bolton T. B. A voltage-dependent outward current with fast kinetics in single smooth muscle cells isolated from rabbit portal vein. J Physiol. 1989 May;412:397–414. doi: 10.1113/jphysiol.1989.sp017623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beech D. J., Bolton T. B. Two components of potassium current activated by depolarization of single smooth muscle cells from the rabbit portal vein. J Physiol. 1989 Nov;418:293–309. doi: 10.1113/jphysiol.1989.sp017841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beech D. J., Zhang H., Nakao K., Bolton T. B. Single channel and whole-cell K-currents evoked by levcromakalim in smooth muscle cells from the rabbit portal vein. Br J Pharmacol. 1993 Oct;110(2):583–590. doi: 10.1111/j.1476-5381.1993.tb13850.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Edwards G., Niederste-Hollenberg A., Schneider J., Noack T., Weston A. H. Ion channel modulation by NS 1619, the putative BKCa channel opener, in vascular smooth muscle. Br J Pharmacol. 1994 Dec;113(4):1538–1547. doi: 10.1111/j.1476-5381.1994.tb17171.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fink R. H., Stephenson D. G. Ca2+-movements in muscle modulated by the state of K+-channels in the sarcoplasmic reticulum membranes. Pflugers Arch. 1987 Aug;409(4-5):374–380. doi: 10.1007/BF00583791. [DOI] [PubMed] [Google Scholar]
  6. Greenwood I. A., Hogg R. C., Large W. A. Effect of frusemide, ethacrynic acid and indanyloxyacetic acid on spontaneous Ca-activated currents in rabbit portal vein smooth muscle cells. Br J Pharmacol. 1995 Jul;115(5):733–738. doi: 10.1111/j.1476-5381.1995.tb14994.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Greenwood I. A., Large W. A. Comparison of the effects of fenamates on Ca-activated chloride and potassium currents in rabbit portal vein smooth muscle cells. Br J Pharmacol. 1995 Dec;116(7):2939–2948. doi: 10.1111/j.1476-5381.1995.tb15948.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hogg R. C., Wang Q., Large W. A. Action of niflumic acid on evoked and spontaneous calcium-activated chloride and potassium currents in smooth muscle cells from rabbit portal vein. Br J Pharmacol. 1994 Jul;112(3):977–984. doi: 10.1111/j.1476-5381.1994.tb13177.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hogg R. C., Wang Q., Large W. A. Effects of Cl channel blockers on Ca-activated chloride and potassium currents in smooth muscle cells from rabbit portal vein. Br J Pharmacol. 1994 Apr;111(4):1333–1341. doi: 10.1111/j.1476-5381.1994.tb14891.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Langton P. D., Nelson M. T., Huang Y., Standen N. B. Block of calcium-activated potassium channels in mammalian arterial myocytes by tetraethylammonium ions. Am J Physiol. 1991 Mar;260(3 Pt 2):H927–H934. doi: 10.1152/ajpheart.1991.260.3.H927. [DOI] [PubMed] [Google Scholar]
  11. Macmillan S., Sheridan R. D., Chilvers E. R., Patmore L. A comparison of the effects of SCA40, NS 004 and NS 1619 on large conductance Ca(2+)-activated K+ channels in bovine tracheal smooth muscle cells in culture. Br J Pharmacol. 1995 Sep;116(1):1656–1660. doi: 10.1111/j.1476-5381.1995.tb16387.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. McManus O. B., Harris G. H., Giangiacomo K. M., Feigenbaum P., Reuben J. P., Addy M. E., Burka J. F., Kaczorowski G. J., Garcia M. L. An activator of calcium-dependent potassium channels isolated from a medicinal herb. Biochemistry. 1993 Jun 22;32(24):6128–6133. doi: 10.1021/bi00075a002. [DOI] [PubMed] [Google Scholar]
  13. Noack T., Deitmer P., Edwards G., Weston A. H. Characterization of potassium currents modulated by BRL 38227 in rat portal vein. Br J Pharmacol. 1992 Jul;106(3):717–726. doi: 10.1111/j.1476-5381.1992.tb14400.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Noack T., Edwards G., Deitmer P., Weston A. H. Potassium channel modulation in rat portal vein by ATP depletion: a comparison with the effects of levcromakalim (BRL 38227). Br J Pharmacol. 1992 Dec;107(4):945–955. doi: 10.1111/j.1476-5381.1992.tb13390.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Olesen S. P., Munch E., Moldt P., Drejer J. Selective activation of Ca(2+)-dependent K+ channels by novel benzimidazolone. Eur J Pharmacol. 1994 Jan 4;251(1):53–59. doi: 10.1016/0014-2999(94)90442-1. [DOI] [PubMed] [Google Scholar]
  16. Ottolia M., Toro L. Potentiation of large conductance KCa channels by niflumic, flufenamic, and mefenamic acids. Biophys J. 1994 Dec;67(6):2272–2279. doi: 10.1016/S0006-3495(94)80712-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Suzuki M., Muraki K., Imaizumi Y., Watanabe M. Cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum Ca(2+)-pump, reduces Ca(2+)-dependent K+ currents in guinea-pig smooth muscle cells. Br J Pharmacol. 1992 Sep;107(1):134–140. doi: 10.1111/j.1476-5381.1992.tb14475.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Uyama Y., Imaizumi Y., Watanabe M. Cyclopiazonic acid, an inhibitor of Ca(2+)-ATPase in sarcoplasmic reticulum, increases excitability in ileal smooth muscle. Br J Pharmacol. 1993 Oct;110(2):565–572. doi: 10.1111/j.1476-5381.1993.tb13848.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Xu X., Tsai T. D., Wang J., Lee E. W., Lee K. S. Modulation of three types of K+ currents in canine coronary artery smooth muscle cells by NS-004, or 1-(2'-hydroxy-5'-chlorophenyl)-5-trifluoromethyl-2(3H) benzimidazolone. J Pharmacol Exp Ther. 1994 Oct;271(1):362–369. [PubMed] [Google Scholar]
  20. Zhang H., Bolton T. B. Activation by intracellular GDP, metabolic inhibition and pinacidil of a glibenclamide-sensitive K-channel in smooth muscle cells of rat mesenteric artery. Br J Pharmacol. 1995 Feb;114(3):662–672. doi: 10.1111/j.1476-5381.1995.tb17190.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES