Abstract
1. Angiotensin II (AII) causes contraction of isolated rings of human saphenous vein, responses that are attenuated by the presence of functional endothelium. In this study, we have investigated the mechanisms controlling the release by AII of two endothelial-derived vasorelaxants, prostacyclin (PGI2) and nitric oxide (NO). 2. Myotropic and biochemical changes were measured in response to AII. The biochemical responses measured were the output of PGI2 (as 6-oxo-PGF1 alpha) and of NO (as cyclic GMP). Inhibitors of cyclo-oxygenase (COX; piroxicam) or NO synthase (NOS; L-NAME), were added to the system to determine the influence of endogenous prostaglandins and NO on both myotropic and biochemical responses. Furthermore, to mimic the effects of endogenous, PGI2 or NO, exogenous forms of these relaxants were added, during inhibition of their endogenous release. 3. Contractions of the rings of saphenous vein in response to AII (1-100 nM) were unaffected by treatment with either piroxicam (5 microM) or L-NAME (200 microM) individually. However, when these two inhibitors were used together, there was an increase in the contractions in response to AII. 4. Biochemical analyses revealed that during stimulation by AII, levels of PGI2 and NO were enhanced when synthesis of the other vasodilator was inhibited, suggesting that endogenous NO inhibits PGI2 synthesis and endogenous, PGI2 or another vasorelaxant PG can inhibit NO synthesis. 5. Exogenous PGI2 (as iloprost) or NO (from glyceryl trinitrate) inhibited the increased output of endogenous NO or PGI2 respectively. 6. These results demonstrate the presence, in human saphenous vein, of a mechanism which ensures that levels of vasodilatation are maintained through a compensatory increase in one relaxant agonist when output of the other is decreased. If present in vivo such a mechanism would be important in maintaining saphenous vein graft patency as both PGI2 and NO are not only vasodilators, but inhibit platelet aggregation and myoinitimal hyperplasia, processes implicated in degeneration of graft function.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen S. P., Chester A. H., Piper P. J., Sampson A. P., Akl E. S., Yacoub M. H. Effects of leukotrienes C4 and D4 on human isolated saphenous veins. Br J Clin Pharmacol. 1992 Nov;34(5):409–414. [PMC free article] [PubMed] [Google Scholar]
- Angelini G. D., Breckenridge I. M., Psaila J. V., Williams H. M., Henderson A. H., Newby A. C. Preparation of human saphenous vein for coronary artery bypass grafting impairs its capacity to produce prostacyclin. Cardiovasc Res. 1987 Jan;21(1):28–33. doi: 10.1093/cvr/21.1.28. [DOI] [PubMed] [Google Scholar]
- Angelini G. D., Christie M. I., Bryan A. J., Lewis M. J. Surgical preparation impairs release of endothelium-derived relaxing factor from human saphenous vein. Ann Thorac Surg. 1989 Sep;48(3):417–420. doi: 10.1016/s0003-4975(10)62869-x. [DOI] [PubMed] [Google Scholar]
- Angelini G. D., Soyombo A. A., Newby A. C. Winner of the ESVS prize 1990. Smooth muscle cell proliferation in response to injury in an organ culture of human saphenous vein. Eur J Vasc Surg. 1991 Feb;5(1):5–12. doi: 10.1016/s0950-821x(05)80919-3. [DOI] [PubMed] [Google Scholar]
- Barker J. E., Anderson J., Treasure T., Piper P. J. Influence of endothelium and surgical preparation on responses of human saphenous vein and internal thoracic artery to angiotensin II. Br J Clin Pharmacol. 1994 Jul;38(1):57–62. doi: 10.1111/j.1365-2125.1994.tb04322.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doni M. G., Whittle B. J., Palmer R. M., Moncada S. Actions of nitric oxide on the release of prostacyclin from bovine endothelial cells in culture. Eur J Pharmacol. 1988 Jun 22;151(1):19–25. doi: 10.1016/0014-2999(88)90687-5. [DOI] [PubMed] [Google Scholar]
- Gruetter C. A., Ryan E. T., Lemke S. M., Bailly D. A., Fox M. K., Schoepp D. D. Endothelium-dependent modulation of angiotensin II-induced contraction in blood vessels. Eur J Pharmacol. 1988 Jan 27;146(1):85–95. doi: 10.1016/0014-2999(88)90489-x. [DOI] [PubMed] [Google Scholar]
- Inoue T., Fukuo K., Morimoto S., Koh E., Ogihara T. Nitric oxide mediates interleukin-1-induced prostaglandin E2 production by vascular smooth muscle cells. Biochem Biophys Res Commun. 1993 Jul 15;194(1):420–424. doi: 10.1006/bbrc.1993.1836. [DOI] [PubMed] [Google Scholar]
- Lot T. Y., Stark G., Wilson V. G. Endothelium-dependent contractions to NG-nitro-L-arginine methyl ester in the porcine isolated splenic artery are sensitive to cyclooxygenase and lipoxygenase inhibitors. Naunyn Schmiedebergs Arch Pharmacol. 1993 Jan;347(1):115–118. doi: 10.1007/BF00168782. [DOI] [PubMed] [Google Scholar]
- Marotta P., Sautebin L., Di Rosa M. Modulation of the induction of nitric oxide synthase by eicosanoids in the murine macrophage cell line J774. Br J Pharmacol. 1992 Nov;107(3):640–641. doi: 10.1111/j.1476-5381.1992.tb14499.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
- Moncada S., Vane J. R. Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A2, and prostacyclin. Pharmacol Rev. 1978 Sep;30(3):293–331. [PubMed] [Google Scholar]
- Nakamura M., Bakhle Y. S. Effects of Ph CL 28A on eicosanoid synthesis in rat isolated hearts. Prostaglandins. 1991 Oct;42(4):303–312. doi: 10.1016/0090-6980(91)90079-u. [DOI] [PubMed] [Google Scholar]
- Painter T. A. Myointimal hyperplasia: pathogenesis and implications. 1. In vitro characteristics. Artif Organs. 1991 Feb;15(1):42–55. doi: 10.1111/j.1525-1594.1991.tb00758.x. [DOI] [PubMed] [Google Scholar]
- Rapoport R. M., Murad F. Endothelium-dependent and nitrovasodilator-induced relaxation of vascular smooth muscle: role of cyclic GMP. J Cyclic Nucleotide Protein Phosphor Res. 1983;9(4-5):281–296. [PubMed] [Google Scholar]
- Salvemini D., Misko T. P., Masferrer J. L., Seibert K., Currie M. G., Needleman P. Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7240–7244. doi: 10.1073/pnas.90.15.7240. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sautebin L., Ialenti A., Ianaro A., Di Rosa M. Modulation by nitric oxide of prostaglandin biosynthesis in the rat. Br J Pharmacol. 1995 Jan;114(2):323–328. doi: 10.1111/j.1476-5381.1995.tb13230.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schini V., Schoeffter P., Miller R. C. Effect of endothelium on basal and on stimulated accumulation and efflux of cyclic GMP in rat isolated aorta. Br J Pharmacol. 1989 Jul;97(3):853–865. doi: 10.1111/j.1476-5381.1989.tb12025.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swierkosz T. A., Mitchell J. A., Warner T. D., Botting R. M., Vane J. R. Co-induction of nitric oxide synthase and cyclo-oxygenase: interactions between nitric oxide and prostanoids. Br J Pharmacol. 1995 Apr;114(7):1335–1342. doi: 10.1111/j.1476-5381.1995.tb13353.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor K. M., Morton I. J., Brown J. J., Bain W. H., Caves P. K. Hypertension and the renin-angiotensin system following open-heart surgery. J Thorac Cardiovasc Surg. 1977 Dec;74(6):840–845. [PubMed] [Google Scholar]
- Toda N., Miyazaki M. Angiotensin-induced relaxation in isolated dog renal and cerebral arteries. Am J Physiol. 1981 Feb;240(2):H247–H254. doi: 10.1152/ajpheart.1981.240.2.H247. [DOI] [PubMed] [Google Scholar]
- Vallotton M. B., Gerber-Wicht C., Dolci W., Rivest R. W. Effect of different calcium channel blockers on angiotensin II- and vasopressin-induced prostacyclin biosynthesis in vascular smooth muscle cells. J Cardiovasc Pharmacol. 1990 Apr;15(4):598–603. doi: 10.1097/00005344-199004000-00012. [DOI] [PubMed] [Google Scholar]
- Yamazaki M., Toda N. Comparison of responses to angiotensin II of dog mesenteric arteries and veins. Eur J Pharmacol. 1991 Aug 29;201(2-3):223–229. doi: 10.1016/0014-2999(91)90349-u. [DOI] [PubMed] [Google Scholar]
- Yang Z. H., Diederich D., Schneider K., Siebenmann R., Stulz P., von Segesser L., Turina M., Bühler F. R., Lüscher T. F. Endothelium-derived relaxing factor and protection against contractions induced by histamine and serotonin in the human internal mammary artery and in the saphenous vein. Circulation. 1989 Oct;80(4):1041–1048. doi: 10.1161/01.cir.80.4.1041. [DOI] [PubMed] [Google Scholar]