Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Jun;118(3):769–775. doi: 10.1111/j.1476-5381.1996.tb15466.x

Desensitization of glucagon-like peptide 1 receptors in insulin-secreting beta TC3 cells: role of PKA-independent mechanisms.

J Gromada 1, S Dissing 1, P Rorsman 1
PMCID: PMC1909716  PMID: 8762106

Abstract

1. The cellular processes involved in the desensitization of the glucagon-like peptide 1 receptors were investigated by measurements of the glucagon-like peptide 1(7-36)amide (GLP-1(7-36)amide)-induced increases in intracellular free Ca2+ concentration ([Ca2+]i) in insulin-secreting beta TC3 cells. 2. In the presence of 11.2 mM glucose, stimulation with GLP-1(7-36)amide led to a small membrane depolarization (< 10 mV), induction of electrical activity and a rapid increase in [Ca2+]i. The increase in [Ca2+]i was not observed in the presence of the L-type Ca(2+)-channel antagonist nifedipine. However, nifedipine was ineffective when applied after addition of GLP-1(7-36)amide. 3. The increase in [Ca2+]i evoked by GLP-1-(7-36)amide was transient and even in the continued presence of the agonist, [Ca2+]i returned to the basal value within 4-5 min. The latter process was slowed, but not prevented, by inhibition of protein kinase C (PKC) by staurosporine and Ro31-8220. 4. Short pretreatment of the cells with the phorbol ester, 4-beta-phorbol-12-beta-myristate-13-alpha-acetate (PMA), an activator of PKC, reduced the GLP-1(7-36)amide-evoked increase in [Ca2+]i by 75%. This effect of PMA was fully reversed by staurosporine and Ro31-8220. 5. The ability of GLP-1(7-36)amide to increase [Ca2+]i disappeared upon pre-exposure of the cells to the hormone (desensitization). This process was maximal within 5 min of exposure to the agonist. Following removal of the agonist from the medium, the ability to respond to subsequent stimulation by GLP-1(7-36)amide recovered gradually with time; half and complete recovery requiring > 20 min and 60 min, respectively. The desensitizing action of GLP-1(7-36)amide persisted in the presence of either staurosporine or forskolin and did not require an elevation of [Ca2+]i. 6. Our data suggest that the GLP-1(7-36)amide-evoked increase in [Ca2+]i is initiated by Ca(2+)-influx though voltage-dependent and nifedipine-sensitive L-type Ca2+ channels but depends principally on Ca2+ mobilization from internal stores for its maintenance. The desensitization of the GLP-1 receptors that occurs in the continued presence of the agonist does not result from the activation of protein kinase A or Ca(2+)-dependent kinases/phosphatases. Our data indicate that activation of PKC may contribute to the desensitization of the GLP-1 receptors but that other (PKC-independent) mechanisms also participate in this process.

Full text

PDF
769

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ammälä C., Ashcroft F. M., Rorsman P. Calcium-independent potentiation of insulin release by cyclic AMP in single beta-cells. Nature. 1993 May 27;363(6427):356–358. doi: 10.1038/363356a0. [DOI] [PubMed] [Google Scholar]
  2. Barr A. J., Watson S. P. Protein kinase C mediates delayed inhibitory feedback regulation of human neurokinin type 1 receptor activation of phospholipase C in UC11 astrocytoma cells. Mol Pharmacol. 1994 Aug;46(2):266–273. [PubMed] [Google Scholar]
  3. Berggren P. O., Arkhammar P., Nilsson T. Activation of protein kinase C assists insulin producing cells in recovery from raised cytoplasmic Ca2+ by stimulating Ca2+ efflux. Biochem Biophys Res Commun. 1989 Nov 30;165(1):416–421. doi: 10.1016/0006-291x(89)91086-3. [DOI] [PubMed] [Google Scholar]
  4. Cullinan C. A., Brady E. J., Saperstein R., Leibowitz M. D. Glucose-dependent alterations of intracellular free calcium by glucagon-like peptide-1(7-36amide) in individual ob/ob mouse beta-cells. Cell Calcium. 1994 May;15(5):391–400. doi: 10.1016/0143-4160(94)90014-0. [DOI] [PubMed] [Google Scholar]
  5. Drucker D. J., Philippe J., Mojsov S., Chick W. L., Habener J. F. Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc Natl Acad Sci U S A. 1987 May;84(10):3434–3438. doi: 10.1073/pnas.84.10.3434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Efrat S., Linde S., Kofod H., Spector D., Delannoy M., Grant S., Hanahan D., Baekkeskov S. Beta-cell lines derived from transgenic mice expressing a hybrid insulin gene-oncogene. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9037–9041. doi: 10.1073/pnas.85.23.9037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fehmann H. C., Habener J. F. Homologous desensitization of the insulinotropic glucagon-like peptide-I (7-37) receptor on insulinoma (HIT-T15) cells. Endocrinology. 1991 Jun;128(6):2880–2888. doi: 10.1210/endo-128-6-2880. [DOI] [PubMed] [Google Scholar]
  8. Gefel D., Hendrick G. K., Mojsov S., Habener J., Weir G. C. Glucagon-like peptide-I analogs: effects on insulin secretion and adenosine 3',5'-monophosphate formation. Endocrinology. 1990 Apr;126(4):2164–2168. doi: 10.1210/endo-126-4-2164. [DOI] [PubMed] [Google Scholar]
  9. Gromada J., Dissing S., Bokvist K., Renström E., Frøkjaer-Jensen J., Wulff B. S., Rorsman P. Glucagon-like peptide I increases cytoplasmic calcium in insulin-secreting beta TC3-cells by enhancement of intracellular calcium mobilization. Diabetes. 1995 Jul;44(7):767–774. doi: 10.2337/diab.44.7.767. [DOI] [PubMed] [Google Scholar]
  10. Gromada J., Rorsman P., Dissing S., Wulff B. S. Stimulation of cloned human glucagon-like peptide 1 receptor expressed in HEK 293 cells induces cAMP-dependent activation of calcium-induced calcium release. FEBS Lett. 1995 Oct 9;373(2):182–186. doi: 10.1016/0014-5793(95)01070-u. [DOI] [PubMed] [Google Scholar]
  11. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  12. Göke R., Conlon J. M. Receptors for glucagon-like peptide-1(7-36) amide on rat insulinoma-derived cells. J Endocrinol. 1988 Mar;116(3):357–362. doi: 10.1677/joe.0.1160357. [DOI] [PubMed] [Google Scholar]
  13. Göke R., Wagner B., Fehmann H. C., Göke B. Glucose-dependency of the insulin stimulatory effect of glucagon-like peptide-1 (7-36) amide on the rat pancreas. Res Exp Med (Berl) 1993;193(2):97–103. doi: 10.1007/BF02576216. [DOI] [PubMed] [Google Scholar]
  14. Hausdorff W. P., Caron M. G., Lefkowitz R. J. Turning off the signal: desensitization of beta-adrenergic receptor function. FASEB J. 1990 Aug;4(11):2881–2889. [PubMed] [Google Scholar]
  15. Holz G. G., 4th, Kühtreiber W. M., Habener J. F. Pancreatic beta-cells are rendered glucose-competent by the insulinotropic hormone glucagon-like peptide-1(7-37). Nature. 1993 Jan 28;361(6410):362–365. doi: 10.1038/361362a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hughes S. J., Carpinelli A., Niki I., Nicks J. L., Ashcroft S. J. Stimulation of insulin release by vasopressin in the clonal beta-cell line, HIT-T15: the role of protein kinase C. J Mol Endocrinol. 1992 Apr;8(2):145–153. doi: 10.1677/jme.0.0080145. [DOI] [PubMed] [Google Scholar]
  17. Lu M., Wheeler M. B., Leng X. H., Boyd A. E., 3rd The role of the free cytosolic calcium level in beta-cell signal transduction by gastric inhibitory polypeptide and glucagon-like peptide I(7-37). Endocrinology. 1993 Jan;132(1):94–100. doi: 10.1210/endo.132.1.8380389. [DOI] [PubMed] [Google Scholar]
  18. Mayor F., Jr, Benovic J. L., Caron M. G., Lefkowitz R. J. Somatostatin induces translocation of the beta-adrenergic receptor kinase and desensitizes somatostatin receptors in S49 lymphoma cells. J Biol Chem. 1987 May 15;262(14):6468–6471. [PubMed] [Google Scholar]
  19. Montrose-Rafizadeh C., Egan J. M., Roth J. Incretin hormones regulate glucose-dependent insulin secretion in RIN 1046-38 cells: mechanisms of action. Endocrinology. 1994 Aug;135(2):589–594. doi: 10.1210/endo.135.2.8033807. [DOI] [PubMed] [Google Scholar]
  20. Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science. 1992 Oct 23;258(5082):607–614. doi: 10.1126/science.1411571. [DOI] [PubMed] [Google Scholar]
  21. Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature. 1984 Apr 19;308(5961):693–698. doi: 10.1038/308693a0. [DOI] [PubMed] [Google Scholar]
  22. Orskov C., Jeppesen J., Madsbad S., Holst J. J. Proglucagon products in plasma of noninsulin-dependent diabetics and nondiabetic controls in the fasting state and after oral glucose and intravenous arginine. J Clin Invest. 1991 Feb;87(2):415–423. doi: 10.1172/JCI115012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rae J., Cooper K., Gates P., Watsky M. Low access resistance perforated patch recordings using amphotericin B. J Neurosci Methods. 1991 Mar;37(1):15–26. doi: 10.1016/0165-0270(91)90017-t. [DOI] [PubMed] [Google Scholar]
  24. Sibley D. R., Strasser R. H., Benovic J. L., Daniel K., Lefkowitz R. J. Phosphorylation/dephosphorylation of the beta-adrenergic receptor regulates its functional coupling to adenylate cyclase and subcellular distribution. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9408–9412. doi: 10.1073/pnas.83.24.9408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Suzuki S., Kawai K., Ohashi S., Mukai H., Yamashita K. Comparison of the effects of various C-terminal and N-terminal fragment peptides of glucagon-like peptide-1 on insulin and glucagon release from the isolated perfused rat pancreas. Endocrinology. 1989 Dec;125(6):3109–3114. doi: 10.1210/endo-125-6-3109. [DOI] [PubMed] [Google Scholar]
  26. Tamaoki T., Nomoto H., Takahashi I., Kato Y., Morimoto M., Tomita F. Staurosporine, a potent inhibitor of phospholipid/Ca++dependent protein kinase. Biochem Biophys Res Commun. 1986 Mar 13;135(2):397–402. doi: 10.1016/0006-291x(86)90008-2. [DOI] [PubMed] [Google Scholar]
  27. Thorens B. Expression cloning of the pancreatic beta cell receptor for the gluco-incretin hormone glucagon-like peptide 1. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8641–8645. doi: 10.1073/pnas.89.18.8641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Thorens B., Waeber G. Glucagon-like peptide-I and the control of insulin secretion in the normal state and in NIDDM. Diabetes. 1993 Sep;42(9):1219–1225. doi: 10.2337/diab.42.9.1219. [DOI] [PubMed] [Google Scholar]
  29. Widmann C., Dolci W., Thorens B. Agonist-induced internalization and recycling of the glucagon-like peptide-1 receptor in transfected fibroblasts and in insulinomas. Biochem J. 1995 Aug 15;310(Pt 1):203–214. doi: 10.1042/bj3100203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Willems P. H., Van Hoof H. J., Van Mackelenbergh M. G., Hoenderop J. G., Van Emst-De Vries S. E., De Pont J. J. Receptor-evoked Ca2+ mobilization in pancreatic acinar cells: evidence for a regulatory role of protein kinase C by a mechanism involving the transition of high-affinity receptors to a low-affinity state. Pflugers Arch. 1993 Jul;424(2):171–182. doi: 10.1007/BF00374609. [DOI] [PubMed] [Google Scholar]
  31. Yada T., Itoh K., Nakata M. Glucagon-like peptide-1-(7-36)amide and a rise in cyclic adenosine 3',5'-monophosphate increase cytosolic free Ca2+ in rat pancreatic beta-cells by enhancing Ca2+ channel activity. Endocrinology. 1993 Oct;133(4):1685–1692. doi: 10.1210/endo.133.4.8404610. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES