Abstract
1. We have investigated the inhibitory effects of RP 73401 (piclamilast) and rolipram against human monocyte cyclic AMP-specific phosphodiesterase (PDE4) in relation to their effects on prostaglandin (PG)E2-induced cyclic AMP accumulation and lipopolysaccharide (LPS)-induced TNF alpha production and TNF alpha mRNA expression. 2. PDE4 was found to be the predominant PDE isoenzyme in the cytosolic fraction of human monocytes. Cyclic GMP-inhibited PDE (PDE3) was also detected in the cytosolic and particulate fractions. Reverse transcription polymerase chain reaction (RT-PCR) of human monocyte poly (A+) mRNA revealed amplified products corresponding to PDE4 subtypes A and B of which the former was most highly expressed. A faint band corresponding in size to PDE4D was also observed. 3. RP 73401 was a potent inhibitor of cytosolic PDE4 (IC50: 1.5 +/- 0.6 nM, n = 3). (+/-)-Rolipram (IC50: 313 +/- 6.7 nM, n = 3) was at least 200 fold less potent than RP 73401. R-(-)-rolipram was approximately 3 fold more potent than S-(+)-rolipram against cytosolic PDE4. 4. RP 73401 (IC50: 9.2 +/- 2.1 nM, n = 6) was over 50 fold more potent than (+/-)-rolipram (IC50: 503 +/- 134 nM, n = 6) ) in potentiating PGE2-induced cyclic AMP accumulation. R-(-)-rolipram (IC50: 289 +/- 121 nM, n = 5) was 4.7 fold more potent than its S-(+)-enantiomer (IC50: 1356 +/- 314 nM, n = 5). A strong and highly-significant, linear correlation (r = 0.95, P < 0.01, n = 13) was observed between the inhibitory potencies of a range of structurally distinct PDE4 inhibitors against monocyte PDE4 and their ED50 values in enhancing monocyte cyclic AMP accumulation. A poorer, though still significant, linear correlation (r = 0.67, P < 0.01, n = 13) was observed between the potencies of the same compounds in potentiating PGE2-induced monocyte cyclic AMP accumulation and their abilities to displace [3H]-rolipram binding to brain membranes. 5. RP 73401 (IC50: 6.9 +/- 3.3 nM, n = 5) was 71 fold more potent than (+/-)-rolipram (IC50: 490 +/- 260 nM, n = 4) in inhibiting LPS-induced TNF alpha release from monocytes. R-(-)-rolipram (IC50: 397 +/- 178 nM, n = 3) was 5.2-fold more potent than its S-(+)- enantiomer (IC50: 2067 +/- 659 nM, n = 3). As with cyclic AMP, accumulation a closer, linear correlation existed between the potency of structurally distinct compounds in suppressing TNF alpha with PDE4 inhibition (r = 0.93, P < 0.01, n = 13) than with displacement of [3H]-rolipram binding (r = 0.65, P < 0.01, n = 13). 6. RP 73401 (IC50: 2 nM) was 180 fold more potent than rolipram (IC50: 360 nM) in suppressing LPS (10 ng ml-1)-induced TNF alpha mRNA. 7. The results demonstrate that RP 73401 is a very potent inhibitor of TNF alpha release from human monocytes suggesting that it may have therapeutic potential in the many pathological conditions associated with over-production of this pro-inflammatory cytokine. Furthermore, PDE inhibitor actions on functional responses are better correlated with inhibition of PDE4 catalytic activity than displacement of [3H]-rolipram from its high-affinity binding site, suggesting that the native PDE4 in human monocytes exists predominantly in a 'low-affinity' state.
Full text
PDF









Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alvarez R., Sette C., Yang D., Eglen R. M., Wilhelm R., Shelton E. R., Conti M. Activation and selective inhibition of a cyclic AMP-specific phosphodiesterase, PDE-4D3. Mol Pharmacol. 1995 Oct;48(4):616–622. [PubMed] [Google Scholar]
- Ashton M. J., Cook D. C., Fenton G., Karlsson J. A., Palfreyman M. N., Raeburn D., Ratcliffe A. J., Souness J. E., Thurairatnam S., Vicker N. Selective type IV phosphodiesterase inhibitors as antiasthmatic agents. The syntheses and biological activities of 3-(cyclopentyloxy)-4-methoxybenzamides and analogues. J Med Chem. 1994 May 27;37(11):1696–1703. doi: 10.1021/jm00037a021. [DOI] [PubMed] [Google Scholar]
- Barnette M. S., Grous M., Cieslinski L. B., Burman M., Christensen S. B., Torphy T. J. Inhibitors of phosphodiesterase IV (PDE IV) increase acid secretion in rabbit isolated gastric glands: correlation between function and interaction with a high-affinity rolipram binding site. J Pharmacol Exp Ther. 1995 Jun;273(3):1396–1402. [PubMed] [Google Scholar]
- Barnette M. S., Manning C. D., Cieslinski L. B., Burman M., Christensen S. B., Torphy T. J. The ability of phosphodiesterase IV inhibitors to suppress superoxide production in guinea pig eosinophils is correlated with inhibition of phosphodiesterase IV catalytic activity. J Pharmacol Exp Ther. 1995 May;273(2):674–679. [PubMed] [Google Scholar]
- Beavo J. A., Reifsnyder D. H. Primary sequence of cyclic nucleotide phosphodiesterase isozymes and the design of selective inhibitors. Trends Pharmacol Sci. 1990 Apr;11(4):150–155. doi: 10.1016/0165-6147(90)90066-H. [DOI] [PubMed] [Google Scholar]
- Bolger G. B. Molecular biology of the cyclic AMP-specific cyclic nucleotide phosphodiesterases: a diverse family of regulatory enzymes. Cell Signal. 1994 Nov;6(8):851–859. doi: 10.1016/0898-6568(94)90018-3. [DOI] [PubMed] [Google Scholar]
- Bolger G., Michaeli T., Martins T., St John T., Steiner B., Rodgers L., Riggs M., Wigler M., Ferguson K. A family of human phosphodiesterases homologous to the dunce learning and memory gene product of Drosophila melanogaster are potential targets for antidepressant drugs. Mol Cell Biol. 1993 Oct;13(10):6558–6571. doi: 10.1128/mcb.13.10.6558. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Engels P., Fichtel K., Lübbert H. Expression and regulation of human and rat phosphodiesterase type IV isogenes. FEBS Lett. 1994 Aug 22;350(2-3):291–295. doi: 10.1016/0014-5793(94)00788-8. [DOI] [PubMed] [Google Scholar]
- Fauci A. S., Schnittman S. M., Poli G., Koenig S., Pantaleo G. NIH conference. Immunopathogenic mechanisms in human immunodeficiency virus (HIV) infection. Ann Intern Med. 1991 Apr 15;114(8):678–693. doi: 10.7326/0003-4819-114-8-678. [DOI] [PubMed] [Google Scholar]
- Fazely F., Dezube B. J., Allen-Ryan J., Pardee A. B., Ruprecht R. M. Pentoxifylline (Trental) decreases the replication of the human immunodeficiency virus type 1 in human peripheral blood mononuclear cells and in cultured T cells. Blood. 1991 Apr 15;77(8):1653–1656. [PubMed] [Google Scholar]
- Feuerstein G. Z., Liu T., Barone F. C. Cytokines, inflammation, and brain injury: role of tumor necrosis factor-alpha. Cerebrovasc Brain Metab Rev. 1994 Winter;6(4):341–360. [PubMed] [Google Scholar]
- Genain C. P., Roberts T., Davis R. L., Nguyen M. H., Uccelli A., Faulds D., Li Y., Hedgpeth J., Hauser S. L. Prevention of autoimmune demyelination in non-human primates by a cAMP-specific phosphodiesterase inhibitor. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3601–3605. doi: 10.1073/pnas.92.8.3601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris A. L., Connell M. J., Ferguson E. W., Wallace A. M., Gordon R. J., Pagani E. D., Silver P. J. Role of low Km cyclic AMP phosphodiesterase inhibition in tracheal relaxation and bronchodilation in the guinea pig. J Pharmacol Exp Ther. 1989 Oct;251(1):199–206. [PubMed] [Google Scholar]
- Hinshaw L. B., Emerson T. E., Jr, Taylor F. B., Jr, Chang A. C., Duerr M., Peer G. T., Flournoy D. J., White G. L., Kosanke S. D., Murray C. K. Lethal Staphylococcus aureus-induced shock in primates: prevention of death with anti-TNF antibody. J Trauma. 1992 Oct;33(4):568–573. [PubMed] [Google Scholar]
- Ishikawa Y., Mukaida N., Kuno K., Rice N., Okamoto S., Matsushima K. Establishment of lipopolysaccharide-dependent nuclear factor kappa B activation in a cell-free system. J Biol Chem. 1995 Feb 24;270(8):4158–4164. [PubMed] [Google Scholar]
- Kambayashi T., Jacob C. O., Zhou D., Mazurek N., Fong M., Strassmann G. Cyclic nucleotide phosphodiesterase type IV participates in the regulation of IL-10 and in the subsequent inhibition of TNF-alpha and IL-6 release by endotoxin-stimulated macrophages. J Immunol. 1995 Nov 15;155(10):4909–4916. [PubMed] [Google Scholar]
- McLaughlin M. M., Cieslinski L. B., Burman M., Torphy T. J., Livi G. P. A low-Km, rolipram-sensitive, cAMP-specific phosphodiesterase from human brain. Cloning and expression of cDNA, biochemical characterization of recombinant protein, and tissue distribution of mRNA. J Biol Chem. 1993 Mar 25;268(9):6470–6476. [PubMed] [Google Scholar]
- Murray K. J., England P. J., Hallam T. J., Maguire J., Moores K., Reeves M. L., Simpson A. W., Rink T. J. The effects of siguazodan, a selective phosphodiesterase inhibitor, on human platelet function. Br J Pharmacol. 1990 Mar;99(3):612–616. doi: 10.1111/j.1476-5381.1990.tb12978.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newell C. L., Deisseroth A. B., Lopez-Berestein G. Interaction of nuclear proteins with an AP-1/CRE-like promoter sequence in the human TNF-alpha gene. J Leukoc Biol. 1994 Jul;56(1):27–35. doi: 10.1002/jlb.56.1.27. [DOI] [PubMed] [Google Scholar]
- Palfreyman M. N., Souness J. E. Phosphodiesterase type IV inhibitors. Prog Med Chem. 1996;33:1–52. doi: 10.1016/s0079-6468(08)70302-3. [DOI] [PubMed] [Google Scholar]
- Prabhakar U., Lipshutz D., Bartus J. O., Slivjak M. J., Smith E. F., 3rd, Lee J. C., Esser K. M. Characterization of cAMP-dependent inhibition of LPS-induced TNF alpha production by rolipram, a specific phosphodiesterase IV (PDE IV) inhibitor. Int J Immunopharmacol. 1994 Oct;16(10):805–816. doi: 10.1016/0192-0561(94)90054-x. [DOI] [PubMed] [Google Scholar]
- Satriano J., Schlondorff D. Activation and attenuation of transcription factor NF-kB in mouse glomerular mesangial cells in response to tumor necrosis factor-alpha, immunoglobulin G, and adenosine 3':5'-cyclic monophosphate. Evidence for involvement of reactive oxygen species. J Clin Invest. 1994 Oct;94(4):1629–1636. doi: 10.1172/JCI117505. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schade F. U., Schudt C. The specific type III and IV phosphodiesterase inhibitor zardaverine suppresses formation of tumor necrosis factor by macrophages. Eur J Pharmacol. 1993 Jan 5;230(1):9–14. doi: 10.1016/0014-2999(93)90403-5. [DOI] [PubMed] [Google Scholar]
- Schmiechen R., Schneider H. H., Wachtel H. Close correlation between behavioural response and binding in vivo for inhibitors of the rolipram-sensitive phosphodiesterase. Psychopharmacology (Berl) 1990;102(1):17–20. doi: 10.1007/BF02245738. [DOI] [PubMed] [Google Scholar]
- Schneider H. H., Schmiechen R., Brezinski M., Seidler J. Stereospecific binding of the antidepressant rolipram to brain protein structures. Eur J Pharmacol. 1986 Aug 7;127(1-2):105–115. doi: 10.1016/0014-2999(86)90210-4. [DOI] [PubMed] [Google Scholar]
- Sekut L., Yarnall D., Stimpson S. A., Noel L. S., Bateman-Fite R., Clark R. L., Brackeen M. F., Menius J. A., Jr, Connolly K. M. Anti-inflammatory activity of phosphodiesterase (PDE)-IV inhibitors in acute and chronic models of inflammation. Clin Exp Immunol. 1995 Apr;100(1):126–132. doi: 10.1111/j.1365-2249.1995.tb03613.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Semmler J., Wachtel H., Endres S. The specific type IV phosphodiesterase inhibitor rolipram suppresses tumor necrosis factor-alpha production by human mononuclear cells. Int J Immunopharmacol. 1993 Apr;15(3):409–413. doi: 10.1016/0192-0561(93)90052-z. [DOI] [PubMed] [Google Scholar]
- Sette C., Vicini E., Conti M. The ratPDE3/IVd phosphodiesterase gene codes for multiple proteins differentially activated by cAMP-dependent protein kinase. J Biol Chem. 1994 Jul 15;269(28):18271–18274. [PubMed] [Google Scholar]
- Sommer N., Löschmann P. A., Northoff G. H., Weller M., Steinbrecher A., Steinbach J. P., Lichtenfels R., Meyermann R., Riethmüller A., Fontana A. The antidepressant rolipram suppresses cytokine production and prevents autoimmune encephalomyelitis. Nat Med. 1995 Mar;1(3):244–248. doi: 10.1038/nm0395-244. [DOI] [PubMed] [Google Scholar]
- Souness J. E., Carter C. M., Diocee B. K., Hassall G. A., Wood L. J., Turner N. C. Characterization of guinea-pig eosinophil phosphodiesterase activity. Assessment of its involvement in regulating superoxide generation. Biochem Pharmacol. 1991 Jul 25;42(4):937–945. doi: 10.1016/0006-2952(91)90056-b. [DOI] [PubMed] [Google Scholar]
- Souness J. E., Maslen C., Scott L. C. Effects of solubilization and vanadate/glutathione complex on inhibitor potencies against eosinophil cyclic AMP-specific phosphodiesterase. FEBS Lett. 1992 May 11;302(2):181–184. doi: 10.1016/0014-5793(92)80435-j. [DOI] [PubMed] [Google Scholar]
- Souness J. E., Maslen C., Webber S., Foster M., Raeburn D., Palfreyman M. N., Ashton M. J., Karlsson J. A. Suppression of eosinophil function by RP 73401, a potent and selective inhibitor of cyclic AMP-specific phosphodiesterase: comparison with rolipram. Br J Pharmacol. 1995 May;115(1):39–46. doi: 10.1111/j.1476-5381.1995.tb16317.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Souness J. E., Scott L. C. Stereospecificity of rolipram actions on eosinophil cyclic AMP-specific phosphodiesterase. Biochem J. 1993 Apr 15;291(Pt 2):389–395. doi: 10.1042/bj2910389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Souness J. E., Thompson W. J., Strada S. J. Adipocyte cyclic nucleotide phosphodiesterase activation by vanadate. J Cyclic Nucleotide Protein Phosphor Res. 1985;10(4):383–396. [PubMed] [Google Scholar]
- Thompson W. J., Ross C. P., Pledger W. J., Strada S. J., Banner R. L., Hersh E. M. Cyclic adenosine 3':5'-monophosphate phosphodiesterase. Distinct forms in human lymphocytes and monocytes. J Biol Chem. 1976 Aug 25;251(16):4922–4929. [PubMed] [Google Scholar]
- Thompson W. J., Tan B. H., Strada S. J. Activation of rabbit liver high affinity cAMP (type IV) phosphodiesterase by a vanadyl-glutathione complex. Characterization of the role of the sulfhydryl. J Biol Chem. 1991 Sep 15;266(26):17011–17019. [PubMed] [Google Scholar]
- Thompson W. J., Terasaki W. L., Epstein P. M., Strada S. J. Assay of cyclic nucleotide phosphodiesterase and resolution of multiple molecular forms of the enzyme. Adv Cyclic Nucleotide Res. 1979;10:69–92. [PubMed] [Google Scholar]
- Torphy T. J., Stadel J. M., Burman M., Cieslinski L. B., McLaughlin M. M., White J. R., Livi G. P. Coexpression of human cAMP-specific phosphodiesterase activity and high affinity rolipram binding in yeast. J Biol Chem. 1992 Jan 25;267(3):1798–1804. [PubMed] [Google Scholar]
- Tracey K. J., Cerami A. Tumor necrosis factor, other cytokines and disease. Annu Rev Cell Biol. 1993;9:317–343. doi: 10.1146/annurev.cb.09.110193.001533. [DOI] [PubMed] [Google Scholar]
- Verghese M. W., McConnell R. T., Lenhard J. M., Hamacher L., Jin S. L. Regulation of distinct cyclic AMP-specific phosphodiesterase (phosphodiesterase type 4) isozymes in human monocytic cells. Mol Pharmacol. 1995 Jun;47(6):1164–1171. [PubMed] [Google Scholar]
- Waage A., Sørensen M., Størdal B. Differential effect of oxpentifylline on tumour necrosis factor and interleukin-6 production. Lancet. 1990 Mar 3;335(8688):543–543. doi: 10.1016/0140-6736(90)90779-5. [DOI] [PubMed] [Google Scholar]
- Wang P., Wu P., Siegel M. I., Egan R. W., Billah M. M. Interleukin (IL)-10 inhibits nuclear factor kappa B (NF kappa B) activation in human monocytes. IL-10 and IL-4 suppress cytokine synthesis by different mechanisms. J Biol Chem. 1995 Apr 21;270(16):9558–9563. doi: 10.1074/jbc.270.16.9558. [DOI] [PubMed] [Google Scholar]
- Williams R. O., Feldmann M., Maini R. N. Anti-tumor necrosis factor ameliorates joint disease in murine collagen-induced arthritis. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9784–9788. doi: 10.1073/pnas.89.20.9784. [DOI] [PMC free article] [PubMed] [Google Scholar]