Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Dec;70(12):8765–8772. doi: 10.1128/jvi.70.12.8765-8772.1996

Demonstration of binding of dengue virus envelope protein to target cells.

Y Chen 1, T Maguire 1, R M Marks 1
PMCID: PMC190973  PMID: 8971005

Abstract

The nature of the initial interaction of dengue virus with target cells and the extent to which this interaction defines tropism are unknown. Infection of some cells may involve antidengue antibody-mediated immune adherence to cells bearing immunoglobulin Fc receptors; however, this mechanism does not explain primary infection or the infection of cells without Fc receptors. We hypothesized that dengue virus envelope protein mediates initial binding to target cells. To test this hypothesis, a recombinant chimeric form of dengue type 2 virus envelope protein was used as a probe to investigate binding to the surfaces of potential target cells. Envelope protein was expressed amino terminal to the heavy-chain constant region of human immunoglobulin G containing the Fc receptor binding motif; the binding mediated by envelope determinants was distinguishable from the binding mediated by immunoglobulin Fc determinants. We found that the recombinant chimera bound to Vero, CHO, endothelial, and glial cells through envelope protein determinants and to monocytes and U937 cells by Fc-Fc receptor interactions. The highest level of binding was to Vero cells; binding was dose and time dependent and saturable. Examination of partial-length recombinant envelope proteins indicated that the binding motif was expressed between amino acids 281 and 423. Recombinant envelope protein inhibited infection of Vero cells by dengue virus, indicating the functional significance of the interaction of envelope protein and target cells in infectivity. These results suggest that envelope protein binding to a non-Fc receptor could explain the cell and tissue tropism of primary dengue virus infection.

Full Text

The Full Text of this article is available as a PDF (265.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson R., King A. D., Innis B. L. Correlation of E protein binding with cell susceptibility to dengue 4 virus infection. J Gen Virol. 1992 Aug;73(Pt 8):2155–2159. doi: 10.1099/0022-1317-73-8-2155. [DOI] [PubMed] [Google Scholar]
  2. Andrews B. S., Theofilopoulos A. N., Peters C. J., Loskutoff D. J., Brandt W. E., Dixon F. J. Replication of dengue and junin viruses in cultured rabbit and human endothelial cells. Infect Immun. 1978 Jun;20(3):776–781. doi: 10.1128/iai.20.3.776-781.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aruffo A., Stamenkovic I., Melnick M., Underhill C. B., Seed B. CD44 is the principal cell surface receptor for hyaluronate. Cell. 1990 Jun 29;61(7):1303–1313. doi: 10.1016/0092-8674(90)90694-a. [DOI] [PubMed] [Google Scholar]
  4. Bork P., Holm L., Sander C. The immunoglobulin fold. Structural classification, sequence patterns and common core. J Mol Biol. 1994 Sep 30;242(4):309–320. doi: 10.1006/jmbi.1994.1582. [DOI] [PubMed] [Google Scholar]
  5. Brandt W. E., McCown J. M., Top F. H., Jr, Bancroft W. H., Russell P. K. Effect of passage history on dengue-2 virus replication in subpopulations of human leukocytes. Infect Immun. 1979 Nov;26(2):534–541. doi: 10.1128/iai.26.2.534-541.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen B. P., Hai T. Expression vectors for affinity purification and radiolabeling of proteins using Escherichia coli as host. Gene. 1994 Feb 11;139(1):73–75. doi: 10.1016/0378-1119(94)90525-8. [DOI] [PubMed] [Google Scholar]
  7. Chen W. B., Maguire T. Nucleotide sequence of the envelope glycoprotein gene of a dengue-2 virus isolated during an epidemic of benign dengue fever in Tonga in 1974. Nucleic Acids Res. 1990 Oct 11;18(19):5889–5889. doi: 10.1093/nar/18.19.5889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chen W., Qu X., Maguire T. A simple and rapid method of preparing large fragments of dengue virus cDNA from replicative-form RNA using reverse transcriptase and PCR. J Virol Methods. 1992 Sep;39(1-2):197–206. doi: 10.1016/0166-0934(92)90138-4. [DOI] [PubMed] [Google Scholar]
  9. Dalgleish A. G., Beverley P. C., Clapham P. R., Crawford D. H., Greaves M. F., Weiss R. A. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature. 1984 Dec 20;312(5996):763–767. doi: 10.1038/312763a0. [DOI] [PubMed] [Google Scholar]
  10. Daughaday C. C., Brandt W. E., McCown J. M., Russell P. K. Evidence for two mechanisms of dengue virus infection of adherent human monocytes: trypsin-sensitive virus receptors and trypsin-resistant immune complex receptors. Infect Immun. 1981 May;32(2):469–473. doi: 10.1128/iai.32.2.469-473.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Deubel V., Bordier M., Megret F., Gentry M. K., Schlesinger J. J., Girard M. Processing, secretion, and immunoreactivity of carboxy terminally truncated dengue-2 virus envelope proteins expressed in insect cells by recombinant baculoviruses. Virology. 1991 Jan;180(1):442–447. doi: 10.1016/0042-6822(91)90055-g. [DOI] [PubMed] [Google Scholar]
  12. Elder J. H., Alexander S. endo-beta-N-acetylglucosaminidase F: endoglycosidase from Flavobacterium meningosepticum that cleaves both high-mannose and complex glycoproteins. Proc Natl Acad Sci U S A. 1982 Aug;79(15):4540–4544. doi: 10.1073/pnas.79.15.4540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Grattage L. P., McKenzie I. F., Hogarth P. M. Effects of PMA, cytokines and dexamethasone on the expression of cell surface Fc receptors and mRNA in U937 cells. Immunol Cell Biol. 1992 Apr;70(Pt 2):97–105. doi: 10.1038/icb.1992.14. [DOI] [PubMed] [Google Scholar]
  14. Halstead S. B. Antibody, macrophages, dengue virus infection, shock, and hemorrhage: a pathogenetic cascade. Rev Infect Dis. 1989 May-Jun;11 (Suppl 4):S830–S839. doi: 10.1093/clinids/11.supplement_4.s830. [DOI] [PubMed] [Google Scholar]
  15. Halstead S. B. Global epidemiology of dengue hemorrhagic fever. Southeast Asian J Trop Med Public Health. 1990 Dec;21(4):636–641. [PubMed] [Google Scholar]
  16. Halstead S. B. Pathogenesis of dengue: challenges to molecular biology. Science. 1988 Jan 29;239(4839):476–481. doi: 10.1126/science.3277268. [DOI] [PubMed] [Google Scholar]
  17. Halstead S. B., Shotwell H., Casals J. Studies on the pathogenesis of dengue infection in monkeys. I. Clinical laboratory responses to primary infection. J Infect Dis. 1973 Jul;128(1):7–14. doi: 10.1093/infdis/128.1.7. [DOI] [PubMed] [Google Scholar]
  18. Hase T., Summers P. L., Eckels K. H. Flavivirus entry into cultured mosquito cells and human peripheral blood monocytes. Arch Virol. 1989;104(1-2):129–143. doi: 10.1007/BF01313814. [DOI] [PubMed] [Google Scholar]
  19. He R. T., Innis B. L., Nisalak A., Usawattanakul W., Wang S., Kalayanarooj S., Anderson R. Antibodies that block virus attachment to Vero cells are a major component of the human neutralizing antibody response against dengue virus type 2. J Med Virol. 1995 Apr;45(4):451–461. doi: 10.1002/jmv.1890450417. [DOI] [PubMed] [Google Scholar]
  20. Henchal E. A., Putnak J. R. The dengue viruses. Clin Microbiol Rev. 1990 Oct;3(4):376–396. doi: 10.1128/cmr.3.4.376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Imbert J. L., Guevara P., Ramos-Castañeda J., Ramos C., Sotelo J. Dengue virus infects mouse cultured neurons but not astrocytes. J Med Virol. 1994 Mar;42(3):228–233. doi: 10.1002/jmv.1890420304. [DOI] [PubMed] [Google Scholar]
  22. Kurane I., Kontny U., Janus J., Ennis F. A. Dengue-2 virus infection of human mononuclear cell lines and establishment of persistent infections. Arch Virol. 1990;110(1-2):91–101. doi: 10.1007/BF01310705. [DOI] [PubMed] [Google Scholar]
  23. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  24. Lucia H. L., Kangwanpong D. Identification of dengue virus-infected cells in paraffin-embedded tissue using in situ polymerase chain reaction and DNA hybridization. J Virol Methods. 1994 Jun;48(1):1–8. doi: 10.1016/0166-0934(94)90083-3. [DOI] [PubMed] [Google Scholar]
  25. Monath T. P. Dengue: the risk to developed and developing countries. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2395–2400. doi: 10.1073/pnas.91.7.2395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Porterfield J. S. Antibody-dependent enhancement of viral infectivity. Adv Virus Res. 1986;31:335–355. doi: 10.1016/s0065-3527(08)60268-7. [DOI] [PubMed] [Google Scholar]
  27. Rey F. A., Heinz F. X., Mandl C., Kunz C., Harrison S. C. The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature. 1995 May 25;375(6529):291–298. doi: 10.1038/375291a0. [DOI] [PubMed] [Google Scholar]
  28. Sahaphong S., Riengrojpitak S., Bhamarapravati N., Chirachariyavej T. Electron microscopic study of the vascular endothelial cell in dengue hemorrhagic fever. Southeast Asian J Trop Med Public Health. 1980 Jun;11(2):194–204. [PubMed] [Google Scholar]
  29. Salzman G. C., Crowell J. M., Martin J. C., Trujillo T. T., Romero A., Mullaney P. F., LaBauve P. M. Cell classification by laser light scattering: identification and separation of unstained leukocytes. Acta Cytol. 1975 Jul-Aug;19(4):374–377. [PubMed] [Google Scholar]
  30. Shao H., Lou L., Pandey A., Pasquale E. B., Dixit V. M. cDNA cloning and characterization of a ligand for the Cek5 receptor protein-tyrosine kinase. J Biol Chem. 1994 Oct 28;269(43):26606–26609. [PubMed] [Google Scholar]
  31. Tarr G. C., Lubiniecki A. S. Chemically induced temperature-sensitive mutants of dengue virus type 2: comparison of temperature sensitivity in vitro with infectivity suckling mice, hamsters, and rhesus monkeys. Infect Immun. 1976 Mar;13(3):688–695. doi: 10.1128/iai.13.3.688-695.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Umemoto J., Bhavanandan V. P., Davidson E. A. Purification and properties of an endo-alpha-N-acetyl-D-galactosaminidase from Diplococcus pneumoniae. J Biol Chem. 1977 Dec 10;252(23):8609–8614. [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES